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Motivation

"It is evident that the primes are randomly distributed but,

unfortunately, we don’t know what random means."
– R. C. Vaughan (February 1990)

Hence, we are interested in the functions formed by the difference
of two consecutive primes: pn+1 − pn, and the number of primes in
a given interval [x, y]: π(x + y)− π(x)
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Results to pn+1 − pn

Results under the assumption of the Riemann Hypothesis:

pn+1 − pn = O(
√

pn log2 pn), Immediate from RH
pn+1 − pn = O(

√
pn log pn), (Cramér 1920)

pn+1 − pn = O(pn
ε), (Cramér 1920)

pn+1 − pn = o(log3 pn) (Cramér Mid 1930s)

Latest Unconditional Results:

Upper Bound: (Baker, Harman, and Pintz 2001)

pn+1 − pn = O(p
1
2+

1
40

n )

Lower Bound: (Pintz 1997)

pn+1 − pn >
c log n log log n log log log log n

(log log log n)2

with c = 2eγ , for infinitely many n
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The Irregular Patterns in the Distribution of Primes

Theorem (Maier, 1985)
For any A > 1,
limn→∞ supπ(n+logA n)−π(n)

logA−1 n
≥ 1, limn→∞ inf π(n+logA n)−π(n)

logA−1 n
≤ 1

The Proof uses the Maier Matrix:


Qx + 1 Qx + 2 Qx + 3 . . . Qx + yC

Q(x + 1) + 1 Q(x + 1) + 2 . . . . . . Q(x + 1) + yC

...
...

...
...

...
Q(2x) + 1 Q(2x) + 2 Q(2x) + 3 . . . Q(2x) + yC


where y is the variable, Q =

∏
p<y y, x = QD,for sufficiently large D, C is

to be determined. Notice that all the columns form arithmetic
progression modulo Q.
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Results due to the use of Maier Matrix

The Prime Number Theorem for Arithmetic Progression assures that
each column j that is coprime to Q, should contain ∼ Q

φ(Q)
x

log(Qx)
primes.

Thus, the number of primes in an average row is

Φ(yC, y) ∼ yCφ(Q)

Q
eγω(C)

where ω(C) is a function converges to e−γ , but oscillates above and
below e−γ
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