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Motivation

"It is evident that the primes are randomly distributed but,
unfortunately, we don’t know what random means."
— R. C. Vaughan (February 1990)

@ Hence, we are interested in the functions formed by the difference
of two consecutive primes: p,.1 — p,, and the number of primes in
a given interval [x,y]: 7(x +y) — m(x)
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Results to p,+1 — pa

Results under the assumption of the Riemann Hypothesis:

Put1 — Pn = O(y/pnlog? p,), Inmediate from RH

Pnt1 — pn = O(y/pnlogpy), (Cramér 1920)
—pn = O(px°), (Cramér 1920)
Pus1 — pn = o(log® p,) (Cramér Mid 1930s)
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Results to p,,..1 — pa

Results under the assumption of the Riemann Hypothesis:
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Results to p,,..1 — pa

Results under the assumption of the Riemann Hypothesis:

Put1 — Pn = O(y/pnlog? p,), Inmediate from RH
Pnt1 — Pn = O(y/Pnlogp,), (Cramér 1920)

Pnt1 — Pn = O(py©), (Cramér 1920)

Pus1 — pn = o(log? p,) (Cramér Mid 1930s)

Latest Unconditional Results:
Upper Bound: (Baker, Harman, and Pintz 2001)

[
Prtt =Pn=Opn ™)
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Results to p,,..1 — pa

Results under the assumption of the Riemann Hypothesis:

Put1 — Pn = O(y/pnlog? p,), Inmediate from RH
Pnt1 — Pn = O(y/Pnlogp,), (Cramér 1920)

Pnt1 — Pn = O(py©), (Cramér 1920)

Pus1 — pn = o(log? p,) (Cramér Mid 1930s)

Latest Unconditional Results:
Upper Bound: (Baker, Harman, and Pintz 2001)

1,1
Prtt —Pn = O(pa )
Lower Bound: (Pintz 1997)

clognloglognloglogloglogn

— >
Biotil 1o (log log log n)?

with ¢ = 2¢7, for infinitely many n
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The Irregular Patterns in the Distribution of Primes

Theorem (Maier, 1985)
Forany A > 1,
lim,, oo Sup'fr(n+logA n)—mn(n)

log"‘_1 n 2 1’ 11mn—>oo inf% < 1
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The Irregular Patterns in the Distribution of Primes

Theorem (Maier, 1985)
Forany A > 1,
lim,, o0 supw

= s > 1, lim,, .o inf m(ntlogh n)—m(n)

log"~!

)—n() 4

n

The Proof uses the Maier Matrix:

Ox+1 Ox+2 Ox+3
Ox+1)+1 QOx+1)+2

020 +1 029 +2 Q2% +3

Ox + y©
O(x+1) +y©

Q(ZX). +y¢
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The Irregular Patterns in the Distribution of Primes

Theorem (Maier, 1985)
Forany A > 1,
lim,,_ o supw

logh='n > 1, limy, 00 inf% <1

The Proof uses the Maier Matrix:

Ox+1 Ox+2 Ox+3

Ox +y©
Ox+1)+1 O(x+1)+2

O(x+1) +y©

02x)+1  Q(2x)+2 Q(2x)+3 . 0(2x) + y©

where y is the variable, 0 = Hp<y y, x = QP for sufficiently large D, C is
to be determined.
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The Irregular Patterns in the Distribution of Primes

Theorem (Maier, 1985)
Forany A > 1,
lim,,_ o supw

logh='n > 1, limy, 00 inf% <1

The Proof uses the Maier Matrix:

Ox+1 Ox+2 Ox+3

Ox +y©
Ox+1)+1 O(x+1)+2

O(x+1) +y©

02x)+1  Q(2x)+2 Q(2x)+3 . 0(2x) + y©

where y is the variable, 0 = Hp<y y, x = QP for sufficiently large D, C is
to be determined. Notice that all the columns form arithmetic
progression modulo Q.
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Results due to the use of Maier Matrix

The Prime Number Theorem for Arithmetic Progression assures that

each column j that is coprime to Q, should contain ~ %@
primes.
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Results due to the use of Maier Matrix

The Prime Number Theorem for Arithmetic Progression assures that
each column j that is coprime to Q, should contain ~ %@
primes. Thus, the number of primes in an average row is

B(C,y) ~ yC%MC)

where w(C) is a function converges to =7, but oscillates above and
below e~7
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