Topic Introduction: Primes in Short Intervals; Irregularities of Distribution (the Maier Matrix Method)

Justin Scarfy

The University of British Columbia

January 19, 2011

Justin Scarfy (UBC)

Primes in Short Intervals

Motivation

"It is evident that the primes are randomly distributed but,

Motivation

"It is evident that the primes are randomly distributed *but*, unfortunately, we don't know what random means." – R. C. Vaughan (February 1990)

Motivation

"It is evident that the primes are randomly distributed *but*, unfortunately, we don't know what random means." – R. C. Vaughan (February 1990)

• Hence, we are interested in the functions formed by the difference of two consecutive primes: $p_{n+1} - p_n$, and the number of primes in a given interval [x, y]: $\pi(x + y) - \pi(x)$

Results under the assumption of the Riemann Hypothesis:

Results under the assumption of the Riemann Hypothesis:

 $p_{n+1} - p_n = \mathcal{O}(\sqrt{p_n} \log^2 p_n)$, Immediate from RH

Results under the assumption of the Riemann Hypothesis:

 $p_{n+1} - p_n = \mathcal{O}(\sqrt{p_n} \log^2 p_n)$, Immediate from RH $p_{n+1} - p_n = \mathcal{O}(\sqrt{p_n} \log p_n)$, (Cramér 1920)

Results under the assumption of the Riemann Hypothesis:

 $p_{n+1} - p_n = \mathcal{O}(\sqrt{p_n}\log^2 p_n)$, Immediate from RH $p_{n+1} - p_n = \mathcal{O}(\sqrt{p_n}\log p_n)$, (Cramér 1920) $p_{n+1} - p_n = \mathcal{O}(p_n^{\epsilon})$, (Cramér 1920)

Results under the assumption of the Riemann Hypothesis:

 $p_{n+1} - p_n = \mathcal{O}(\sqrt{p_n}\log^2 p_n)$, Immediate from RH $p_{n+1} - p_n = \mathcal{O}(\sqrt{p_n}\log p_n)$, (Cramér 1920) $p_{n+1} - p_n = \mathcal{O}(p_n^{\epsilon})$, (Cramér 1920) $p_{n+1} - p_n = o(\log^3 p_n)$ (Cramér Mid 1930s)

Results under the assumption of the Riemann Hypothesis:

 $p_{n+1} - p_n = \mathcal{O}(\sqrt{p_n} \log^2 p_n)$, Immediate from RH $p_{n+1} - p_n = \mathcal{O}(\sqrt{p_n} \log p_n)$, (Cramér 1920) $p_{n+1} - p_n = \mathcal{O}(p_n^{\epsilon})$, (Cramér 1920) $p_{n+1} - p_n = o(\log^3 p_n)$ (Cramér Mid 1930s)

Latest Unconditional Results:

Results under the assumption of the Riemann Hypothesis:

 $p_{n+1} - p_n = \mathcal{O}(\sqrt{p_n} \log^2 p_n)$, Immediate from RH $p_{n+1} - p_n = \mathcal{O}(\sqrt{p_n} \log p_n)$, (Cramér 1920) $p_{n+1} - p_n = \mathcal{O}(p_n^{\epsilon})$, (Cramér 1920) $p_{n+1} - p_n = o(\log^3 p_n)$ (Cramér Mid 1930s)

Latest Unconditional Results:

Upper Bound: (Baker, Harman, and Pintz 2001)

$$p_{n+1} - p_n = \mathcal{O}(p_n^{\frac{1}{2} + \frac{1}{40}})$$

Results under the assumption of the Riemann Hypothesis:

 $p_{n+1} - p_n = \mathcal{O}(\sqrt{p_n} \log^2 p_n)$, Immediate from RH $p_{n+1} - p_n = \mathcal{O}(\sqrt{p_n} \log p_n)$, (Cramér 1920) $p_{n+1} - p_n = \mathcal{O}(p_n^{\epsilon})$, (Cramér 1920) $p_{n+1} - p_n = o(\log^3 p_n)$ (Cramér Mid 1930s)

Latest Unconditional Results:

Upper Bound: (Baker, Harman, and Pintz 2001)

$$p_{n+1} - p_n = \mathcal{O}(p_n^{\frac{1}{2} + \frac{1}{40}})$$

Lower Bound: (Pintz 1997)

$$p_{n+1} - p_n > \frac{c \log n \log \log \log \log \log \log \log n}{(\log \log \log \log n)^2}$$

with $c = 2e^{\gamma}$, for infinitely many *n*

Theorem (Maier, 1985)

For any A > 1, $\lim_{n \to \infty} \sup \frac{\pi(n + \log^A n) - \pi(n)}{\log^{A-1} n} \ge 1$, $\lim_{n \to \infty} \inf \frac{\pi(n + \log^A n) - \pi(n)}{\log^{A-1} n} \le 1$

Theorem (Maier, 1985) For any A > 1, $\lim_{n\to\infty} \sup \frac{\pi(n+\log^A n)-\pi(n)}{\log^{A-1} n} \ge 1$, $\lim_{n\to\infty} \inf \frac{\pi(n+\log^A n)-\pi(n)}{\log^{A-1} n} \le 1$

The Proof uses the Maier Matrix:

$$\begin{bmatrix} Qx+1 & Qx+2 & Qx+3 & \dots & Qx+y^{C} \\ Q(x+1)+1 & Q(x+1)+2 & \dots & \dots & Q(x+1)+y^{C} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ Q(2x)+1 & Q(2x)+2 & Q(2x)+3 & \dots & Q(2x)+y^{C} \end{bmatrix}$$

Theorem (Maier, 1985) For any A > 1, $\lim_{n\to\infty} \sup \frac{\pi(n+\log^A n)-\pi(n)}{\log^{A-1} n} \ge 1$, $\lim_{n\to\infty} \inf \frac{\pi(n+\log^A n)-\pi(n)}{\log^{A-1} n} \le 1$

The Proof uses the Maier Matrix:

$$\begin{bmatrix} Qx+1 & Qx+2 & Qx+3 & \dots & Qx+y^{C} \\ Q(x+1)+1 & Q(x+1)+2 & \dots & \dots & Q(x+1)+y^{C} \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ Q(2x)+1 & Q(2x)+2 & Q(2x)+3 & \dots & Q(2x)+y^{C} \end{bmatrix}$$

where *y* is the variable, $Q = \prod_{p < y} y$, $x = Q^D$, for sufficiently large *D*, *C* is to be determined.

Theorem (Maier, 1985) For any A > 1, $\lim_{n\to\infty} \sup \frac{\pi(n+\log^A n)-\pi(n)}{\log^{A-1} n} \ge 1$, $\lim_{n\to\infty} \inf \frac{\pi(n+\log^A n)-\pi(n)}{\log^{A-1} n} \le 1$

The Proof uses the Maier Matrix:

where *y* is the variable, $Q = \prod_{p < y} y$, $x = Q^D$, for sufficiently large *D*, *C* is to be determined. Notice that all the columns form arithmetic progression modulo *Q*.

Results due to the use of Maier Matrix

The Prime Number Theorem for Arithmetic Progression assures that each column *j* that is coprime to *Q*, should contain $\sim \frac{Q}{\phi(Q)} \frac{x}{\log(Qx)}$ primes.

Results due to the use of Maier Matrix

The Prime Number Theorem for Arithmetic Progression assures that each column *j* that is coprime to *Q*, should contain $\sim \frac{Q}{\phi(Q)} \frac{x}{\log(Qx)}$ primes. Thus, the number of primes in an average row is

$$\Phi(y^C, y) \sim y^C \frac{\phi(Q)}{Q} e^{\gamma} \omega(C)$$

where $\omega(C)$ is a function converges to $e^{-\gamma}$, but oscillates above and below $e^{-\gamma}$