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Introduction

Although every attempt of proving the Riemann Hypothesis, that all nontrival
zeros of {(s) line on o = % has failed, it is proved by G. H. Hardy in 1914 that

¢(s) has infinitely many zeros on o = 1
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Introduction

Although every attempt of proving the Riemann Hypothesis, that all nontrival
zeros of {(s) line on o = % has failed, it is proved by G. H. Hardy in 1914 that

¢(s) has infinitely many zeros on o = 1

Hardy’s proof employs the functional equations, £(s) and Z(z), for the Riemann
zeta function ¢(s): he managed to show the correspondence of zeros between
((s) on o = § and Z(r) on the real line, and proving the existence of infinitely
many zeros for Z(¢) on the real line.

Justin Scarfy (UBC) Zeros On the Critical Line | February 21, 2011 2/12



Introduction

Although every attempt of proving the Riemann Hypothesis, that all nontrival
zeros of {(s) line on o = % has failed, it is proved by G. H. Hardy in 1914 that

¢(s) has infinitely many zeros on o = 1

Hardy’s proof employs the functional equations, £(s) and Z(z), for the Riemann
zeta function ¢(s): he managed to show the correspondence of zeros between
((s) on o = § and Z(r) on the real line, and proving the existence of infinitely
many zeros for Z(¢) on the real line.

The Functional Equations for the Zeta Function:

&(s) 1 = Es(s - l)w_%sF<—s)<(s) (1)

2(f) : = g(% + it) - —%(rz + %)w—%—%’r(% + %iz)g“(% + it) @)

o’
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Lemma 1 (Riemann 1859)
&(s) = &(1 — s) i.e. the reflexive formula for the functional equation
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Lemma 1 (Riemann 1859)
&(s) = &(1 — s) i.e. the reflexive formula for the functional equation

Proof of Lemma 1 (1/3)
By Euler’s integral formula, when o > 0,

1 oo
F(—s) = / e "ut 1 du
2 0
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&(s) = &(1 — s) i.e. the reflexive formula for the functional equation
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Lemma 1 (Riemann 1859)

&(s) = &(1 — s) i.e. the reflexive formula for the functional equation

Proof of Lemma 1 (1/3)
By Euler’s integral formula, when o > 0,

1 o0
F(—s) z/ e ur! dy
2 0
F(ls) 0
—2 :/ efnzﬂ'xx%sfldx
0

nS7r%S
Hence if ¢ > 1, we sum over rn to find:

F(%S)C(S) _ i/oo x%s—le—nzﬂx dx
n=1 0

1
w2
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Lemma 1 (Riemann 1859)

&(s) = &(1 — s) i.e. the reflexive formula for the functional equation

Proof of Lemma 1 (1/3)
By Euler’s integral formula, when o > 0,

1 oo
F(—s) z/ e "ut 1 du
2 0
F(ls) )
2 :/ efnzﬂ'xx%sfldx
0

nzs
Hence if ¢ > 1, we sum over n to find:
F(ls)g(s) %0 oo 0
2 1 2 1 2
1 _ Z/ xis—le—n T Iy — / xis_l Ze—n ™ Iy
L n=1"0 U

the inversion is justified by absolute convergent
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Proof of Lemma 1 (2/3)

v
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Proof of Lemma 1 (2/3)

Y) =Y e ™ (3)
n=1
we therefore have, for o > 1
_ ﬂ-%s 2s—l
0 =g f, s @

v
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Proof of Lemma 1 (2/3)

Y) =Y e ™ (3)
n=1
we therefore have, for o > 1
) — e / 11y (x) dx 4)
F(%S) 0
Also we see for x > 0,
. —nzrrx _ 1 S —n27T1
> 1 = o 21
Pl —n°mx —0 ™ —nmy —0 T
Z e +e ~ (22 e + )
n=1 n=1
1 1
2000+ 1= o (20(3) +1) 5)
X X
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Proof of Lemma 1 (3/3)
The middle equation (4) in the previous slide gives:

1 0o
()0 = [ Avmat [T v

4
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Proof of Lemma 1 (3/3)
The middle equation (4) in the previous slide gives:

1 oo
w’%sf(%s)g(s):/o x%s’lw(x)dyﬂ—/1 x5l (x) dx

= /leés—l{%w(%) + ZL\/} = %}dx-i- /loox%s_lw(x) dx

4
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Proof of Lemma 1 (3/3)
The middle equation (4) in the previous slide gives:

1 0o
()0 = [ A umat [T v
LT B 1 1 S
:/OxZ 1{%?/1(;)4-27\/}*5}6&4-/1 x4 (x) dx

1 1 ! L2 1 > 1s—1
= ——+ [ v Zw(;)dv—l— X7 h(x) dx
0

s—1 s 1

4
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Proof of Lemma 1 (3/3)
The middle equation (4) in the previous slide gives:

1 0o
()0 = [ A umat [T v

1 [e'S)
1 1 1 1 1 |
= 35—1 - — - = dx 5s—1 d
/0 - {\/}w(x) * 2/x 2} +/1 ¥Pl) dx
- 1+/d%%w5d+/m**w)w
=i st/ v S)dv 1 x x

4
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Proof of Lemma 1 (3/3)
The middle equation (4) in the previous slide gives:

1 0o
()0 = [ A umat [T v

= /leés—l{%w(%) + ZL\/)_C = %}dx-i- /loox%s_lw(x) dx

1 1 1 1 0
=173 +/O v%s_%l/}(;)dv+/l x%s_ld)(x)dx
1 a0 ne g
o= 1) +/1 X2 ax2 T N (x) dx

The last integral is convergent for all values of s.
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Proof of Lemma 1 (3/3)
The middle equation (4) in the previous slide gives:

1 o]
f%sr(%s)g(s)z /0 x5 ap(x) dx + /1 x5l (x) dx

O 1 1 1 1 >

. 75— - - 25—1

_/0 x {—ﬁw(x)Jrzﬁ 2}dx+/1 X2 (x) dx
1 1 1 1.3 1 S

et [t [
1

o0
Ll 1 1o g
- - d
s(s—1)+/1 x 257202 N (x) dx

The last integral is convergent for all values of s.

By analytic continuation, we see that the R.H.S. is unchanged if we replace s
by 1 — s, therefore:

1 1 | 1
ﬂ_fsl"(zs)((s) = W_f(l_s)I‘(E(l — s))(((l —¥))
Multiply by 1s(s — 1) yields Lemma 1 O

4
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/Ooo (tz . %) 7150) cos(i) dt = %ﬂ_{e%x _ 26_%)‘1/;(6_2’5)} (6)
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/00<> (tz + i) 715(t) cos(xt) dt = %w{e%x = 26’_%)(7/1(3_2)()} (6)

V.

Proof of Lemma 2 (1/2)
This is a speC|aI case of which the integral involving Z(¢) of the form
/ f()E() cos(xt) dr that can be evaluated.

Where £ (1) := |¢(if)|> = ¢(ir)p(—it), ¢ analytic.

4

Justin Scarfy (UBC) Zeros On the Critical Line | February 21, 2011 6/12



/00<> (tz + i) 715(t) cos(xt) dt = %w{e%x = 26’_%)(7/1(3_2)()} (6)

V.

Proof of Lemma 2 (1/2)
This is a speC|aI case of which the integral involving Z(¢) of the form

/ f()E(¢) cos(xt) dr that can be evaluated.
Where (1) := |¢ (zt)\ = ¢(it)p(—it), ¢ analytic.
Let y = ¢":

-3/ Z (i) b(—in)E(0)y" dr

4
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/00<> (tz + i) 715(t) cos(xt) dt = %w{e%x = 26’_%)(7/1(3_2)()} (6)

V.

Proof of Lemma 2 (1/2)
This is a speC|aI case of which the integral involving Z(¢) of the form

/ f()E(¢) cos(xt) dr that can be evaluated.
Where (1) := |¢ (zt)\ = ¢(it)p(—it), ¢ analytic.
Lety = ¢*:

_L / " olit)p(—it)(e)y" de

/ o (it)p(—it)€ —|— lt) y'dt

5\
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—1
Oo 1 1
/0 (t2 I Z) E(t) cos(xt) dt = Ew{e%x

—2eFy(e>) )

(6)

V.

Proof of Lemma 2 (1/2)
This is a speC|aI case of which the integral involving

/ £

) cos(xt) dt that can be evaluated.

E(z) of the form

Where £ (1) := |¢(if)|> = ¢(ir)p(—it), ¢ analytic.

Lety = ¢*:
/ o(it)p(—it)Z(t)y" dt
/ o (it)p(—it)€ + tt)y” dt

T2y /_::c (b(s a %)(b(% a S)g(s)ysds

5\
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Proof of Lemma 2 (2/2)

O(x) = 2;'1/; /;:O ¢>(s - %)qﬁ(% - s) (s — 1)r(1 n %s)ﬂ—%sg(s)ys ds
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Proof of Lemma 2 (2/2)

D(x) = Zii/i /i-:o ¢(s - %)qb(% - s) (s — l)F(l + %S)?T_%SC(S)yst
Now put ¢(s) — (s + 5)_1, (so |g(ir)|* = (t2 n ;{)_1) we have:

= [ )
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Proof of Lemma 2 (2/2)
D(x) = %y /;_T:O ¢(s - %)qﬁ(% - s) (s — I)F(l + %s)ﬂ_%sg(s)ysds
Now put ¢(s) = (s + %)_1, (so |g(ir)|* = (t2 n ;{)_1) we have:

—Hoo 1

21\/_ 1
;—Hool
= 41\/_ 77 2¢(s)y" ds

ls)w b¢(s)y ds
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Proof of Lemma 2 (2/2)

D(x) = Zii/i /f:o ¢(s - %)qﬁ(% — s) (s — I)F(l + %s)ﬂ_%sg(s)ys ds
Now put ¢(s) = (s + %)_1, (so lo(in) P = (7 + ;{)_1) we have:

—Hoo
)= 21\/_ L ;T lS)” sy ds
;—Hoo 1
= 41\/_ 77 ~2((s)y ds
= Ld;(i) L lﬂ\/y
vy 2
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Proof of Lemma 2 (2/2)

I 1y, /1 LS
B(x) = 5 [_ioo ¢(s— §>¢(§ —s)(s— 1)r(1 + Es)w ¢ (s)y’ ds
: —1 5 —1
Now put ¢(s) = (s+ %) , (s0 | (ir)[* = (t2+ ;{) ) we have:
+IOO 1 1 : :
(x) = 21\/_ . —s>ﬂ' 25C(s)y" ds
;—Hoo 1
= 41\/_ 7T #((s)y ds
T 1 1
- ﬁ%‘z) R
Inserting back y = ¢*, we get the desired integral:
> 2 l _1: _ l ix 5 ,—1x =0k
/O <z +7) B0 cos(aydr = gr{ed —2emHy(e )} 0
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Theorem (Hardy 1914)

The ¢(s) has infinitely many zeros on o = %
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Theorem (Hardy 1914)
The ¢(s) has infinitely many zeros on o = %

Proof of Theorem (1/5)

NUUIVSYS S U PSS R vA B U U0 B W
§|nce E(7) —§<2 +lt> = 2<t 4 4)7r .z F(4 I 21t)(<2 +lt) is an even
integrable function of # (by Lemma 1), and is real for real ¢.
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Theorem (Hardy 1914)

The ((s) has infinitely many zeros on o = 5

1

Proof of Theorem (1/5)

Since =(1) = g(% n it) - _%

(#+ et e

integrable function of # (by Lemma 1), and is real for real ¢.

A zero of ((s) on o = 1 therefore corresponds to a real zero of Z(z), thus it

suffices to show that Z(z) has infinitely many real zeros.

2

1 .
=4 it) IS an even
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Theorem (Hardy 1914)
The ¢(s) has infinitely many zeros on o = %

Proof of Theorem (1/5)
1

1

Since (1) = 5(% I it) _ ! <t2 + %)w—r%fr(— I 1it)§<l + it) is an even

2 4 2 2

integrable function of # (by Lemma 1), and is real for real ¢.

A zero of ((s) on o = 1 therefore corresponds to a real zero of Z(z), thus it
suffices to show that Z(¢) has infinitely many real zeros.
Putting x = —ia in (6), Lemma 2, we have

2 e 2 1 _1,—\ —la Lio 2ice

= 4+ — | E(t)cosh(ar)dr = e~ 2% — 2e2" %) (e”Y)

™ Jo 4

= 2cos 104 - 285""‘{l + 1/1(62i°‘)}
2 2
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Proof of Theorem (2/5)

Since ¢(} +ir) = O(), E(r) = O(r*e~ ™), and the last integral may be
differentiated w.r.t. a any number of times provided that « < }ﬂr.

v
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Proof of Theorem (2/5)

Since ¢(} +ir) = O(), E(r) = O(r*e~ ™), and the last integral may be
differentiated w.r.t. & any number of times provided that o < %ﬂ'. Thus,

2 [P, INT1_ o _(_1)”cos(%a)
_/0 (t +Z) E(t)r cosh(at)dt—T

™
() s

v
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Proof of Theorem (2/5)
Since ¢(} +ir) = O(), E(r) = O(r*e~ ™), and the last integral may be
differentiated w.r.t. & any number of times provided that o < %ﬂ'. Thus,

2 [, AN o, (—1)”cos(%a)
—/0 (t +Z) E(r)r cosh(at)dt_T

v
o) e e}

Next we show that the last term tends to 0 as o — .

Justin Scarfy (UBC) Zeros On the Critical Line | February 21, 2011 9/12



Proof of Theorem (2/5)

Since ¢(} +ir) = O(), E(r) = O(r*e~ ™), and the last integral may be
differentiated w.r.t. & any number of times provided that o < %ﬂ'. Thus,

2 [, AN o, (—1)”cos(%a)
;/0 (t +Z) :([)t COSh(Oét) dt :T
d > Lia 1 io
~2(gg) {3 ree)

Next we show that the last term tends to 0 as a — .
Again use (5), the property of ¢ (x) exploited in Lemma 1:

Justin Scarfy (UBC) Zeros On the Critical Line | February 21, 2011

9/12



Proof of Theorem (3/5)
It follows: (i + 8) = 2¢5(46) — 1(0) = %w(%

Hence 1 + ¢(x) and all its derivatives tend to zero as x — i along any route in

an angle |arg(x —i)| < ix

) -2 -3
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Proof of Theorem (3/5)
It follows: (i + 8) = 2¢(46) — 1(6) = %ip(%) _ %Qp(%) -

Hence 1 + ¢(x) and all its derivatives tend to zero as x — i along any route in
an angle |arg(x — i)| < g7

We have thus proved that

o0

—il
1
lim <t2 + Z) E(t)*" cosh(at) dt =

1
a—37m J0

(=1)"m cos(§m)

22n (7)
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Proof of Theorem (3/5)
It follows: (i + 8) = 2¢(46) — 1(6) = %ip(%) _ %@b(%) -

Hence 1 + ¢(x) and all its derivatives tend to zero as x — i along any route in
an angle |arg(x — i)| < g7

We have thus proved that

o0

—il
1
lim <t2 + Z) E(t)*" cosh(at) dt =

1
a—3mJ0

(=1)"m cos(im)
— O
Suppose now =(¢) were ultimately of one sign (for the sake of contradiction),
say positive (negative can be shown by the same reason) for r > T, then

oo 1 -1
lim (ﬂ + —) Z(1)P" cosh(at) dt = L> 0

a—im JT 4
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Proof of Theorem (4/5)
Foralla < ymand 77 > T,

T/

1\ -1

0< / (t2 + Z) Z(t)*" cosh(at) dt < L
T
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Proof of Theorem (4/5)
Foralla < ymand T’ > T,

T/

I\ —!

0< / <t2 + Z) Z(t)f*" cosh(at) dt < L
T

Hence, letting o — |7

T’ 1\ -1 1
/ <t2 + —) E(t)*" cosh (*Wt) dt <L
7 4 4

Justin Scarfy (UBC) Zeros On the Critical Line | February 21, 2011

11/12



Proof of Theorem (4/5)
Foralla < ymand T’ > T,

T/

1\ -1

0< / <t2 + Z) Z(t)*" cosh(at) dt < L
T

H 1
Hence, letting o — 77

T’ 1\ -1 1
/ (t2 + —) E(t)t2" cosh (—m) dt<L
7 4 4

Thus the following integral converges due to the L.H.S. of (7), and converges
with respect to o for 0 < o < 7

for every n.
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Proof of Theorem (5/5)

Equation (8) on the previous slide, however, is impossible, since when taking

n odd, the R.H.S. is negative, therefore

T
/T(f2+4) 12(0)F cosh(%m)dt<—/0(t2+l

< KT

where K is independent of n.

o

'Z(1)*" cosh (%m) dt
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Proof of Theorem (5/5)

Equation (8) on the previous slide, however, is impossible, since when taking
n odd, the R.H.S. is negative, therefore

P = h (L) a "eg s h(Len)
/T ( +4) '2(t)r*" cos (Zm) t<—/O (@ +7)" '2(1)f" cos (Zm) t
< KT™

where K is independent of n.

But by hypothesis (Z(r) > 0 for t > T), there is a positive m = m(T) where
—il

<t2+%> E(t) > mfor 2T <t < 2T + 1:

2741

9] 1\ ! 1
/ (t2 + —) Z(t)*" cosh (—m) dr > / mt*" dt > m(2T)™"
T 4 4 2T
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Proof of Theorem (5/5)

Equation (8) on the previous slide, however, is impossible, since when taking

n odd, the R.H.S. is negative, therefore

/ (£ + ) 'E(t)*" cosh (—7t) dt < —/ (4 5)"'E(1)*" cosh (S mt) dt
T 4 4 0 4 4

< KTZn
where K is independent of n.
But by hypothesis (Z(r) > 0 for t > T), there is a positive m = m(T) where
—1
(t2+%> E(t) > mfor2T <t < 2T + 1:

oo 1 -1 1 27+1
(t2 + —) E(t)*" cosh (—m) dt > mt*" dt > m(2T)>"
T 4 4 2T
Hence, m2%" < K, which is false for sufficiently large n. O
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