Zeros On the Critical Line I: The Existence of Infinitely Many Zeros on the Critical Line

Justin Scarfy

The University of British Columbia

February 21, 2011

Introduction

Although every attempt of proving the Riemann Hypothesis, that all nontrival zeros of $\zeta(s)$ line on $\sigma=\frac{1}{2}$, has failed, it is proved by G. H. Hardy in 1914 that $\zeta(s)$ has infinitely many zeros on $\sigma=\frac{1}{2}$

Introduction

Although every attempt of proving the Riemann Hypothesis, that all nontrival zeros of $\zeta(s)$ line on $\sigma=\frac{1}{2}$, has failed, it is proved by G. H. Hardy in 1914 that $\zeta(s)$ has infinitely many zeros on $\sigma=\frac{1}{2}$

Hardy's proof employs the functional equations, $\xi(s)$ and $\Xi(t)$, for the Riemann zeta function $\zeta(s)$: he managed to show the correspondence of zeros between $\zeta(s)$ on $\sigma=\frac{1}{2}$ and $\Xi(t)$ on the real line, and proving the existence of infinitely many zeros for $\Xi(t)$ on the real line.

Introduction

Although every attempt of proving the Riemann Hypothesis, that all nontrival zeros of $\zeta(s)$ line on $\sigma=\frac{1}{2}$, has failed, it is proved by G. H. Hardy in 1914 that $\zeta(s)$ has infinitely many zeros on $\sigma=\frac{1}{2}$

Hardy's proof employs the functional equations, $\xi(s)$ and $\Xi(t)$, for the Riemann zeta function $\zeta(s)$: he managed to show the correspondence of zeros between $\zeta(s)$ on $\sigma=\frac{1}{2}$ and $\Xi(t)$ on the real line, and proving the existence of infinitely many zeros for $\Xi(t)$ on the real line.

The Functional Equations for the Zeta Function:

$$\xi(s) := \frac{1}{2}s(s-1)\pi^{-\frac{1}{2}s}\Gamma\left(\frac{1}{2}s\right)\zeta(s) \tag{1}$$

$$\Xi(t) := \xi\left(\frac{1}{2} + it\right) = -\frac{1}{2}\left(t^2 + \frac{1}{4}\right)\pi^{-\frac{1}{4} - \frac{1}{2}t}\Gamma\left(\frac{1}{4} + \frac{1}{2}it\right)\zeta\left(\frac{1}{2} + it\right) \tag{2}$$

 $\xi(s) = \xi(1-s)$ i.e. the reflexive formula for the functional equation

 $\xi(s)=\xi(1-s)$ i.e. the reflexive formula for the functional equation

Proof of Lemma 1 (1/3)

By Euler's integral formula, when $\sigma > 0$,

$$\Gamma\left(\frac{1}{2}s\right) = \int_0^\infty e^{-u} u^{\frac{1}{2}s-1} du$$

 $\xi(s) = \xi(1-s)$ i.e. the reflexive formula for the functional equation

Proof of Lemma 1 (1/3)

By Euler's integral formula, when $\sigma > 0$,

$$\Gamma\left(\frac{1}{2}s\right) = \int_0^\infty e^{-u} u^{\frac{1}{2}s-1} du$$

$$\frac{\Gamma(\frac{1}{2}s)}{n^{s}\pi^{\frac{1}{2}s}} = \int_{0}^{\infty} e^{-n^{2}\pi x} x^{\frac{1}{2}s-1} dx$$

 $\xi(s) = \xi(1-s)$ i.e. the reflexive formula for the functional equation

Proof of Lemma 1 (1/3)

By Euler's integral formula, when $\sigma > 0$,

$$\Gamma\left(\frac{1}{2}s\right) = \int_0^\infty e^{-u} u^{\frac{1}{2}s-1} du$$

$$\frac{\Gamma\left(\frac{1}{2}s\right)}{n^s \pi^{\frac{1}{2}s}} = \int_0^\infty e^{-n^2 \pi x} x^{\frac{1}{2}s-1} dx$$

Hence if $\sigma > 1$, we sum over n to find:

$$\frac{\Gamma\left(\frac{1}{2}s\right)\zeta(s)}{\pi^{\frac{1}{2}s}} = \sum_{n=1}^{\infty} \int_{0}^{\infty} x^{\frac{1}{2}s-1} e^{-n^{2}\pi x} dx$$

 $\xi(s) = \xi(1-s)$ i.e. the reflexive formula for the functional equation

Proof of Lemma 1 (1/3)

By Euler's integral formula, when $\sigma > 0$,

$$\Gamma\left(\frac{1}{2}s\right) = \int_0^\infty e^{-u} u^{\frac{1}{2}s-1} du$$

$$\frac{\Gamma\left(\frac{1}{2}s\right)}{n^s \pi^{\frac{1}{2}s}} = \int_0^\infty e^{-n^2 \pi x} x^{\frac{1}{2}s-1} dx$$

Hence if $\sigma > 1$, we sum over n to find:

$$\frac{\Gamma\left(\frac{1}{2}s\right)\zeta(s)}{\pi^{\frac{1}{2}s}} = \sum_{n=1}^{\infty} \int_{0}^{\infty} x^{\frac{1}{2}s-1} e^{-n^{2}\pi x} dx = \int_{0}^{\infty} x^{\frac{1}{2}s-1} \sum_{n=1}^{\infty} e^{-n^{2}\pi x} dx$$

the inversion is justified by absolute convergent

$$\psi(x) := \sum_{n=1}^{\infty} e^{-n^2 \pi x}$$
 (3)

$$\psi(x) := \sum_{n=1}^{\infty} e^{-n^2 \pi x}$$
 (3)

we therefore have, for $\sigma > 1$

$$\zeta(s) = \frac{\pi^{\frac{1}{2}s}}{\Gamma(\frac{1}{2}s)} \int_0^\infty x^{\frac{1}{2}s-1} \psi(x) dx \tag{4}$$

$$\psi(x) := \sum_{n=1}^{\infty} e^{-n^2 \pi x} \tag{3}$$

we therefore have, for $\sigma > 1$

$$\zeta(s) = \frac{\pi^{\frac{1}{2}s}}{\Gamma(\frac{1}{2}s)} \int_0^\infty x^{\frac{1}{2}s-1} \psi(x) dx \tag{4}$$

Also we see for x > 0,

$$\sum_{n=-\infty}^{\infty} e^{-n^2 \pi x} = \frac{1}{\sqrt{x}} \sum_{n=-\infty}^{\infty} e^{-n^2 \pi \frac{1}{x}}$$

$$2 \sum_{n=1}^{\infty} e^{-n^2 \pi x} + e^{-0^2 \pi x} = \frac{1}{\sqrt{x}} \left(2 \sum_{n=1}^{\infty} e^{-n^2 \pi \frac{1}{x}} + e^{-0^2 \pi \frac{1}{x}} \right)$$

$$2 \psi(x) + 1 = \frac{1}{\sqrt{x}} \left(2 \psi \left(\frac{1}{x} \right) + 1 \right)$$
(5)

$$\pi^{-\frac{1}{2}s}\Gamma(\frac{1}{2}s)\zeta(s) = \int_0^1 x^{\frac{1}{2}s-1}\psi(x) \, dx + \int_1^\infty x^{\frac{1}{2}s-1}\psi(x) \, dx$$

$$\pi^{-\frac{1}{2}s}\Gamma(\frac{1}{2}s)\zeta(s) = \int_0^1 x^{\frac{1}{2}s-1}\psi(x) dx + \int_1^\infty x^{\frac{1}{2}s-1}\psi(x) dx$$
$$= \int_0^1 x^{\frac{1}{2}s-1} \left\{ \frac{1}{\sqrt{x}}\psi(\frac{1}{x}) + \frac{1}{2\sqrt{x}} - \frac{1}{2} \right\} dx + \int_1^\infty x^{\frac{1}{2}s-1}\psi(x) dx$$

$$\pi^{-\frac{1}{2}s}\Gamma(\frac{1}{2}s)\zeta(s) = \int_0^1 x^{\frac{1}{2}s-1}\psi(x) \, dx + \int_1^\infty x^{\frac{1}{2}s-1}\psi(x) \, dx$$

$$= \int_0^1 x^{\frac{1}{2}s-1} \left\{ \frac{1}{\sqrt{x}}\psi(\frac{1}{x}) + \frac{1}{2\sqrt{x}} - \frac{1}{2} \right\} dx + \int_1^\infty x^{\frac{1}{2}s-1}\psi(x) \, dx$$

$$= \frac{1}{s-1} - \frac{1}{s} + \int_0^1 v^{\frac{1}{2}s-\frac{3}{2}}\psi(\frac{1}{v}) \, dv + \int_1^\infty x^{\frac{1}{2}s-1}\psi(x) \, dx$$

$$\pi^{-\frac{1}{2}s}\Gamma\left(\frac{1}{2}s\right)\zeta(s) = \int_{0}^{1} x^{\frac{1}{2}s-1}\psi(x) dx + \int_{1}^{\infty} x^{\frac{1}{2}s-1}\psi(x) dx$$

$$= \int_{0}^{1} x^{\frac{1}{2}s-1} \left\{ \frac{1}{\sqrt{x}}\psi\left(\frac{1}{x}\right) + \frac{1}{2\sqrt{x}} - \frac{1}{2} \right\} dx + \int_{1}^{\infty} x^{\frac{1}{2}s-1}\psi(x) dx$$

$$= \frac{1}{s-1} - \frac{1}{s} + \int_{0}^{1} v^{\frac{1}{2}s-\frac{3}{2}}\psi\left(\frac{1}{v}\right) dv + \int_{1}^{\infty} x^{\frac{1}{2}s-1}\psi(x) dx$$

$$= \frac{1}{s(s-1)} + \int_{1}^{\infty} x^{-\frac{1}{2}s-\frac{1}{2}}x^{\frac{1}{2}s-1}\psi(x) dx$$

The middle equation (4) in the previous slide gives:

$$\pi^{-\frac{1}{2}s}\Gamma(\frac{1}{2}s)\zeta(s) = \int_0^1 x^{\frac{1}{2}s-1}\psi(x) dx + \int_1^\infty x^{\frac{1}{2}s-1}\psi(x) dx$$

$$= \int_0^1 x^{\frac{1}{2}s-1} \left\{ \frac{1}{\sqrt{x}}\psi(\frac{1}{x}) + \frac{1}{2\sqrt{x}} - \frac{1}{2} \right\} dx + \int_1^\infty x^{\frac{1}{2}s-1}\psi(x) dx$$

$$= \frac{1}{s-1} - \frac{1}{s} + \int_0^1 v^{\frac{1}{2}s-\frac{3}{2}}\psi(\frac{1}{v}) dv + \int_1^\infty x^{\frac{1}{2}s-1}\psi(x) dx$$

$$= \frac{1}{s(s-1)} + \int_1^\infty x^{-\frac{1}{2}s-\frac{1}{2}}x^{\frac{1}{2}s-1}\psi(x) dx$$

The last integral is convergent for all values of s.

The middle equation (4) in the previous slide gives:

$$\pi^{-\frac{1}{2}s}\Gamma(\frac{1}{2}s)\zeta(s) = \int_{0}^{1} x^{\frac{1}{2}s-1}\psi(x) dx + \int_{1}^{\infty} x^{\frac{1}{2}s-1}\psi(x) dx$$

$$= \int_{0}^{1} x^{\frac{1}{2}s-1} \left\{ \frac{1}{\sqrt{x}}\psi(\frac{1}{x}) + \frac{1}{2\sqrt{x}} - \frac{1}{2} \right\} dx + \int_{1}^{\infty} x^{\frac{1}{2}s-1}\psi(x) dx$$

$$= \frac{1}{s-1} - \frac{1}{s} + \int_{0}^{1} v^{\frac{1}{2}s-\frac{3}{2}}\psi(\frac{1}{v}) dv + \int_{1}^{\infty} x^{\frac{1}{2}s-1}\psi(x) dx$$

$$= \frac{1}{s(s-1)} + \int_{1}^{\infty} x^{-\frac{1}{2}s-\frac{1}{2}}x^{\frac{1}{2}s-1}\psi(x) dx$$

The last integral is convergent for all values of s.

By analytic continuation, we see that the R.H.S. is unchanged if we replace s by 1-s, therefore:

$$\pi^{-\frac{1}{2}s}\Gamma(\frac{1}{2}s)\zeta(s) = \pi^{-\frac{1}{2}(1-s)}\Gamma(\frac{1}{2}(1-s))\zeta((1-s))$$

Multiply by $\frac{1}{2}s(s-1)$ yields Lemma 1

$$\int_0^\infty \left(t^2 + \frac{1}{4} \right)^{-1} \Xi(t) \cos(xt) \, dt = \frac{1}{2} \pi \left\{ e^{\frac{1}{2}x} - 2e^{-\frac{1}{2}x} \psi(e^{-2x}) \right\} \tag{6}$$

$$\int_0^\infty \left(t^2 + \frac{1}{4} \right)^{-1} \Xi(t) \cos(xt) \, dt = \frac{1}{2} \pi \left\{ e^{\frac{1}{2}x} - 2e^{-\frac{1}{2}x} \psi(e^{-2x}) \right\} \tag{6}$$

Proof of Lemma 2 (1/2)

This is a special case of which the integral involving $\Xi(t)$ of the form

$$\Phi(x) = \int_0^\infty f(t)\Xi(t)\cos(xt)\,dt \text{ that can be evaluated.}$$

Where $f(t) := |\phi(it)|^2 = \phi(it)\phi(-it)$, ϕ analytic.

$$\int_0^\infty \left(t^2 + \frac{1}{4} \right)^{-1} \Xi(t) \cos(xt) \, dt = \frac{1}{2} \pi \left\{ e^{\frac{1}{2}x} - 2e^{-\frac{1}{2}x} \psi(e^{-2x}) \right\} \tag{6}$$

Proof of Lemma 2 (1/2)

This is a special case of which the integral involving $\Xi(t)$ of the form

$$\Phi(x) = \int_0^\infty f(t)\Xi(t)\cos(xt)\,dt$$
 that can be evaluated.

Where $f(t) := |\phi(it)|^2 = \phi(it)\phi(-it)$, ϕ analytic.

Let $y = e^x$:

$$\Phi(x) = \frac{1}{2} \int_{-\infty}^{\infty} \phi(it)\phi(-it)\Xi(t)y^{it} dt$$

$$\int_0^\infty \left(t^2 + \frac{1}{4} \right)^{-1} \Xi(t) \cos(xt) \, dt = \frac{1}{2} \pi \left\{ e^{\frac{1}{2}x} - 2e^{-\frac{1}{2}x} \psi(e^{-2x}) \right\} \tag{6}$$

Proof of Lemma 2 (1/2)

This is a special case of which the integral involving $\Xi(t)$ of the form

$$\Phi(x) = \int_0^\infty f(t)\Xi(t)\cos(xt)\,dt$$
 that can be evaluated.

Where $f(t) := |\phi(it)|^2 = \phi(it)\phi(-it)$, ϕ analytic.

Let $y = e^x$:

$$\Phi(x) = \frac{1}{2} \int_{-\infty}^{\infty} \phi(it)\phi(-it)\Xi(t)y^{it} dt$$
$$= \frac{1}{2} \int_{-\infty}^{\infty} \phi(it)\phi(-it)\xi\left(\frac{1}{2} + it\right)y^{it} dt$$

$$\int_0^\infty \left(t^2 + \frac{1}{4} \right)^{-1} \Xi(t) \cos(xt) \, dt = \frac{1}{2} \pi \left\{ e^{\frac{1}{2}x} - 2e^{-\frac{1}{2}x} \psi(e^{-2x}) \right\} \tag{6}$$

Proof of Lemma 2 (1/2)

This is a special case of which the integral involving $\Xi(t)$ of the form

$$\Phi(x) = \int_0^\infty f(t)\Xi(t)\cos(xt)\,dt$$
 that can be evaluated.

Where $f(t) := |\phi(it)|^2 = \phi(it)\phi(-it)$, ϕ analytic.

Let $y = e^x$:

$$\begin{split} \Phi(x) &= \frac{1}{2} \int_{-\infty}^{\infty} \phi(it) \phi(-it) \Xi(t) y^{it} \, dt \\ &= \frac{1}{2} \int_{-\infty}^{\infty} \phi(it) \phi(-it) \xi\left(\frac{1}{2} + it\right) y^{it} \, dt \\ &= \frac{1}{2i\sqrt{y}} \int_{\frac{1}{2} - i\infty}^{\frac{1}{2} + i\infty} \phi\left(s - \frac{1}{2}\right) \phi\left(\frac{1}{2} - s\right) \xi(s) y^{s} \, ds \end{split}$$

$$\Phi(x) = \frac{1}{2i\sqrt{y}} \int_{\frac{1}{3}-i\infty}^{\frac{1}{2}+i\infty} \phi\left(s - \frac{1}{2}\right) \phi\left(\frac{1}{2} - s\right) (s - 1) \Gamma\left(1 + \frac{1}{2}s\right) \pi^{-\frac{1}{2}s} \zeta(s) y^s ds$$

$$\Phi(x) = \frac{1}{2i\sqrt{y}} \int_{\frac{1}{2}-i\infty}^{\frac{1}{2}+i\infty} \phi\left(s - \frac{1}{2}\right) \phi\left(\frac{1}{2} - s\right) (s - 1) \Gamma\left(1 + \frac{1}{2}s\right) \pi^{-\frac{1}{2}s} \zeta(s) y^{s} ds$$

Now put $\phi(s) = \left(s + \frac{1}{2}\right)^{-1}$, $\left(\text{so } |\phi(it)|^2 = \left(t^2 + \frac{1}{4}\right)^{-1}\right)$ we have:

$$\Phi(x) = -\frac{1}{2i\sqrt{y}} \int_{\frac{1}{2}-i\infty}^{\frac{1}{2}+i\infty} \frac{1}{s} \Gamma\left(1 + \frac{1}{2}s\right) \pi^{-\frac{1}{2}s} \zeta(s) y^{s} ds$$

$$\begin{split} &\Phi(x) = \frac{1}{2i\sqrt{y}} \int_{\frac{1}{2}-i\infty}^{\frac{1}{2}+i\infty} \phi\Big(s-\frac{1}{2}\Big) \phi\Big(\frac{1}{2}-s\Big)(s-1) \Gamma\Big(1+\frac{1}{2}s\Big) \pi^{-\frac{1}{2}s} \zeta(s) y^s \, ds \\ &\text{Now put } \phi(s) = \Big(s+\frac{1}{2}\Big)^{-1}, \, \Big(\text{so } |\phi(it)|^2 = \Big(t^2+\frac{1}{4}\Big)^{-1}\Big) \text{ we have:} \end{split}$$

$$\Phi(x) = -\frac{1}{2i\sqrt{y}} \int_{\frac{1}{2}-i\infty}^{\frac{1}{2}+i\infty} \frac{1}{s} \Gamma\left(1 + \frac{1}{2}s\right) \pi^{-\frac{1}{2}s} \zeta(s) y^{s} ds$$
$$= -\frac{1}{4i\sqrt{y}} \int_{\frac{1}{2}-i\infty}^{\frac{1}{2}+i\infty} \frac{1}{s} \Gamma\left(\frac{1}{2}s\right) \pi^{-\frac{1}{2}s} \zeta(s) y^{s} ds$$

$$\begin{split} &\Phi(x) = \frac{1}{2i\sqrt{y}} \int_{\frac{1}{2}-i\infty}^{\frac{1}{2}+i\infty} \phi\Big(s-\frac{1}{2}\Big) \phi\Big(\frac{1}{2}-s\Big)(s-1) \Gamma\Big(1+\frac{1}{2}s\Big) \pi^{-\frac{1}{2}s} \zeta(s) y^s \, ds \\ &\text{Now put } \phi(s) = \Big(s+\frac{1}{2}\Big)^{-1}, \ \big(\text{so } |\phi(it)|^2 = \Big(t^2+\frac{1}{4}\Big)^{-1}\big) \ \text{we have:} \end{split}$$

$$\Phi(x) = -\frac{1}{2i\sqrt{y}} \int_{\frac{1}{2}-i\infty}^{\frac{1}{2}+i\infty} \frac{1}{s} \Gamma\left(1 + \frac{1}{2}s\right) \pi^{-\frac{1}{2}s} \zeta(s) y^{s} ds$$

$$= -\frac{1}{4i\sqrt{y}} \int_{\frac{1}{2}-i\infty}^{\frac{1}{2}+i\infty} \frac{1}{s} \Gamma\left(\frac{1}{2}s\right) \pi^{-\frac{1}{2}s} \zeta(s) y^{s} ds$$

$$= \frac{\pi}{\sqrt{y}} \psi\left(\frac{1}{y^{2}}\right) + \frac{1}{2} \pi \sqrt{y}$$

$$\Phi(x) = \frac{1}{2i\sqrt{y}} \int_{\frac{1}{2}-i\infty}^{\frac{1}{2}+i\infty} \phi\left(s - \frac{1}{2}\right) \phi\left(\frac{1}{2} - s\right) (s - 1) \Gamma\left(1 + \frac{1}{2}s\right) \pi^{-\frac{1}{2}s} \zeta(s) y^{s} ds$$

Now put $\phi(s) = \left(s + \frac{1}{2}\right)^{-1}$, $\left(\text{so } |\phi(it)|^2 = \left(t^2 + \frac{1}{4}\right)^{-1}\right)$ we have:

$$\Phi(x) = -\frac{1}{2i\sqrt{y}} \int_{\frac{1}{2}-i\infty}^{\frac{1}{2}+i\infty} \frac{1}{s} \Gamma\left(1 + \frac{1}{2}s\right) \pi^{-\frac{1}{2}s} \zeta(s) y^{s} ds$$

$$= -\frac{1}{4i\sqrt{y}} \int_{\frac{1}{2}-i\infty}^{\frac{1}{2}+i\infty} \frac{1}{s} \Gamma\left(\frac{1}{2}s\right) \pi^{-\frac{1}{2}s} \zeta(s) y^{s} ds$$

$$= \frac{\pi}{\sqrt{y}} \psi\left(\frac{1}{y^{2}}\right) + \frac{1}{2} \pi \sqrt{y}$$

Inserting back $y = e^x$, we get the desired integral:

$$\int_0^\infty \left(t^2 + \frac{1}{4} \right)^{-1} \Xi(t) \cos(xt) dt = \frac{1}{2} \pi \left\{ e^{\frac{1}{2}x} - 2e^{-\frac{1}{2}x} \psi(e^{-2x}) \right\}$$

The $\zeta(s)$ has infinitely many zeros on $\sigma = \frac{1}{2}$

The $\zeta(s)$ has infinitely many zeros on $\sigma = \frac{1}{2}$

Proof of Theorem (1/5)

Since $\Xi(t) = \xi\left(\frac{1}{2} + it\right) = -\frac{1}{2}\left(t^2 + \frac{1}{4}\right)\pi^{-\frac{1}{4} - \frac{1}{2}t}\Gamma\left(\frac{1}{4} + \frac{1}{2}it\right)\zeta\left(\frac{1}{2} + it\right)$ is an even integrable function of t (by Lemma 1), and is real for real t.

The $\zeta(s)$ has infinitely many zeros on $\sigma = \frac{1}{2}$

Proof of Theorem (1/5)

Since $\Xi(t) = \xi\left(\frac{1}{2} + it\right) = -\frac{1}{2}\left(t^2 + \frac{1}{4}\right)\pi^{-\frac{1}{4} - \frac{1}{2}t}\Gamma\left(\frac{1}{4} + \frac{1}{2}it\right)\zeta\left(\frac{1}{2} + it\right)$ is an even integrable function of t (by Lemma 1), and is real for real t.

A zero of $\zeta(s)$ on $\sigma=\frac{1}{2}$ therefore corresponds to a real zero of $\Xi(t)$, thus it suffices to show that $\Xi(t)$ has infinitely many real zeros.

The $\zeta(s)$ has infinitely many zeros on $\sigma = \frac{1}{2}$

Proof of Theorem (1/5)

Since $\Xi(t) = \xi\left(\frac{1}{2} + it\right) = -\frac{1}{2}\left(t^2 + \frac{1}{4}\right)\pi^{-\frac{1}{4} - \frac{1}{2}t}\Gamma\left(\frac{1}{4} + \frac{1}{2}it\right)\zeta\left(\frac{1}{2} + it\right)$ is an even integrable function of t (by Lemma 1), and is real for real t.

A zero of $\zeta(s)$ on $\sigma = \frac{1}{2}$ therefore corresponds to a real zero of $\Xi(t)$, thus it suffices to show that $\Xi(t)$ has infinitely many real zeros.

Putting $x = -i\alpha$ in (6), Lemma 2, we have

$$\frac{2}{\pi} \int_0^\infty \left(t^2 + \frac{1}{4} \right)^{-1} \Xi(t) \cosh(\alpha t) \, dt = e^{-\frac{1}{2}\alpha} - 2e^{\frac{1}{2}i\alpha} \psi(e^{2i\alpha})$$
$$= 2\cos\frac{1}{2}\alpha - 2e^{\frac{1}{2}i\alpha} \left\{ \frac{1}{2} + \psi(e^{2i\alpha}) \right\}$$

Since $\zeta(\frac{1}{2}+it)=\mathcal{O}(t^A)$, $\Xi(t)=\mathcal{O}(t^Ae^{-\frac{1}{4}\pi t})$, and the last integral may be differentiated w.r.t. α any number of times provided that $\alpha<\frac{1}{4}\pi$.

Since $\zeta(\frac{1}{2}+it)=\mathcal{O}(t^A)$, $\Xi(t)=\mathcal{O}(t^Ae^{-\frac{1}{4}\pi t})$, and the last integral may be differentiated w.r.t. α any number of times provided that $\alpha<\frac{1}{4}\pi$. Thus,

$$\frac{2}{\pi} \int_0^\infty \left(t^2 + \frac{1}{4} \right)^{-1} \Xi(t) t^{2n} \cosh(\alpha t) dt = \frac{(-1)^n \cos(\frac{1}{2}\alpha)}{2^{2n-1}} - 2\left(\frac{d}{d\alpha}\right)^{2n} e^{\frac{1}{2}i\alpha} \left\{ \frac{1}{2} + \psi(e^{2i\alpha}) \right\}$$

Since $\zeta(\frac{1}{2}+it)=\mathcal{O}(t^A)$, $\Xi(t)=\mathcal{O}(t^Ae^{-\frac{1}{4}\pi t})$, and the last integral may be differentiated w.r.t. α any number of times provided that $\alpha<\frac{1}{4}\pi$. Thus,

$$\frac{2}{\pi} \int_0^\infty \left(t^2 + \frac{1}{4} \right)^{-1} \Xi(t) t^{2n} \cosh(\alpha t) dt = \frac{(-1)^n \cos(\frac{1}{2}\alpha)}{2^{2n-1}} - 2\left(\frac{d}{d\alpha}\right)^{2n} e^{\frac{1}{2}i\alpha} \left\{ \frac{1}{2} + \psi(e^{2i\alpha}) \right\}$$

Next we show that the last term tends to 0 as $\alpha \to \frac{1}{4}\pi$.

Since $\zeta(\frac{1}{2}+it)=\mathcal{O}(t^A)$, $\Xi(t)=\mathcal{O}(t^Ae^{-\frac{1}{4}\pi t})$, and the last integral may be differentiated w.r.t. α any number of times provided that $\alpha<\frac{1}{4}\pi$. Thus,

$$\frac{2}{\pi} \int_0^\infty \left(t^2 + \frac{1}{4} \right)^{-1} \Xi(t) t^{2n} \cosh(\alpha t) \, dt = \frac{(-1)^n \cos(\frac{1}{2}\alpha)}{2^{2n-1}} - 2\left(\frac{d}{d\alpha}\right)^{2n} e^{\frac{1}{2}i\alpha} \left\{ \frac{1}{2} + \psi(e^{2i\alpha}) \right\}$$

Next we show that the last term tends to 0 as $\alpha \to \frac{1}{4}\pi$.

Again use (5), the property of $\psi(x)$ exploited in Lemma 1:

$$\psi(x) = \frac{1}{\sqrt{x}}\psi\left(\frac{1}{x}\right) + \frac{1}{2\sqrt{x}} - \frac{1}{2}$$

$$\psi(i+\delta) = \sum_{n=1}^{\infty} e^{-n^2 \pi (i+\delta)} = \sum_{n=1}^{\infty} (-1)^n e^{-n^2 \pi \delta}$$

It follows:
$$\psi(i+\delta) = 2\psi(4\delta) - \psi(\delta) = \frac{1}{\sqrt{\delta}}\psi\Big(\frac{1}{4\delta}\Big) - \frac{1}{\sqrt{\delta}}\psi\Big(\frac{1}{\delta}\Big) - \frac{1}{2}$$

Hence $\frac{1}{2} + \psi(x)$ and all its derivatives tend to zero as $x \to i$ along any route in an angle $|\arg(x-i)| < \frac{1}{2}\pi$

It follows:
$$\psi(i+\delta) = 2\psi(4\delta) - \psi(\delta) = \frac{1}{\sqrt{\delta}}\psi\Big(\frac{1}{4\delta}\Big) - \frac{1}{\sqrt{\delta}}\psi\Big(\frac{1}{\delta}\Big) - \frac{1}{2}$$

Hence $\frac{1}{2} + \psi(x)$ and all its derivatives tend to zero as $x \to i$ along any route in an angle $|\arg(x-i)| < \frac{1}{2}\pi$

We have thus proved that

$$\lim_{\alpha \to \frac{1}{4}\pi} \int_0^\infty \left(t^2 + \frac{1}{4} \right)^{-1} \Xi(t) t^{2n} \cosh(\alpha t) \, dt = \frac{(-1)^n \pi \cos(\frac{1}{8}\pi)}{2^{2n}} \tag{7}$$

It follows:
$$\psi(i+\delta) = 2\psi(4\delta) - \psi(\delta) = \frac{1}{\sqrt{\delta}}\psi\left(\frac{1}{4\delta}\right) - \frac{1}{\sqrt{\delta}}\psi\left(\frac{1}{\delta}\right) - \frac{1}{2}$$

Hence $\frac{1}{2}+\psi(x)$ and all its derivatives tend to zero as $x\to i$ along any route in an angle $|\arg(x-i)|<\frac{1}{2}\pi$

We have thus proved that

$$\lim_{\alpha \to \frac{1}{4}\pi} \int_{0}^{\infty} \left(t^2 + \frac{1}{4} \right)^{-1} \Xi(t) t^{2n} \cosh(\alpha t) \, dt = \frac{(-1)^n \pi \cos(\frac{1}{8}\pi)}{2^{2n}} \tag{7}$$

Suppose now $\Xi(t)$ were ultimately of one sign (for the sake of contradiction), say positive (negative can be shown by the same reason) for $t \geq T$, then

$$\lim_{\alpha \to \frac{1}{4}\pi} \int_{T}^{\infty} \left(t^2 + \frac{1}{4} \right)^{-1} \Xi(t) t^{2n} \cosh(\alpha t) dt = L > 0$$

For all $\alpha < \frac{1}{4}\pi$ and T' > T,

$$0 < \int_{T}^{T'} \left(t^2 + \frac{1}{4}\right)^{-1} \Xi(t) t^{2n} \cosh(\alpha t) dt \le L$$

For all $\alpha < \frac{1}{4}\pi$ and T' > T,

$$0 < \int_T^{T'} \left(t^2 + \frac{1}{4} \right)^{-1} \Xi(t) t^{2n} \cosh(\alpha t) dt \le L$$

Hence, letting $\alpha \to \frac{1}{4}\pi$

$$\int_{T}^{T'} \left(t^2 + \frac{1}{4}\right)^{-1} \Xi(t) t^{2n} \cosh\left(\frac{1}{4}\pi t\right) dt \le L$$

February 21, 2011

For all $\alpha < \frac{1}{4}\pi$ and T' > T,

$$0 < \int_{T}^{T'} \left(t^2 + \frac{1}{4}\right)^{-1} \Xi(t) t^{2n} \cosh(\alpha t) dt \le L$$

Hence, letting $\alpha \to \frac{1}{4}\pi$

$$\int_{T}^{T'} \left(t^2 + \frac{1}{4}\right)^{-1} \Xi(t) t^{2n} \cosh\left(\frac{1}{4}\pi t\right) dt \le L$$

Thus the following integral converges due to the L.H.S. of (7), and converges with respect to α for $0 \le \alpha \le \frac{1}{4}\pi$:

$$\int_0^\infty \left(t^2 + \frac{1}{4} \right)^{-1} \Xi(t) t^{2n} \cosh\left(\frac{1}{4}\pi t\right) dt = \frac{(-1)^n \pi \cos\left(\frac{1}{8}\pi\right)}{2^{2n}} \tag{8}$$

for every n.

Equation (8) on the previous slide, however, is impossible, since when taking n odd, the R.H.S. is negative, therefore

$$\int_{T}^{\infty} (t^{2} + \frac{1}{4})^{-1} \Xi(t) t^{2n} \cosh\left(\frac{1}{4}\pi t\right) dt < -\int_{0}^{T} (t^{2} + \frac{1}{4})^{-1} \Xi(t) t^{2n} \cosh\left(\frac{1}{4}\pi t\right) dt < KT^{2n}$$

where K is independent of n.

February 21, 2011

Equation (8) on the previous slide, however, is impossible, since when taking n odd, the R.H.S. is negative, therefore

$$\int_{T}^{\infty} (t^{2} + \frac{1}{4})^{-1} \Xi(t) t^{2n} \cosh\left(\frac{1}{4}\pi t\right) dt < -\int_{0}^{T} (t^{2} + \frac{1}{4})^{-1} \Xi(t) t^{2n} \cosh\left(\frac{1}{4}\pi t\right) dt < KT^{2n}$$

where K is independent of n.

But by hypothesis $(\Xi(t) > 0 \text{ for } t \ge T)$, there is a positive m = m(T) where $\left(t^2 + \frac{1}{4}\right)^{-1}\Xi(t) \ge m \text{ for } 2T \le t \le 2T + 1$:

$$\int_{T}^{\infty} \left(t^2 + \frac{1}{4}\right)^{-1} \Xi(t) t^{2n} \cosh\left(\frac{1}{4}\pi t\right) dt \ge \int_{2T}^{2T+1} m t^{2n} dt \ge m (2T)^{2n}$$

Equation (8) on the previous slide, however, is impossible, since when taking n odd, the R.H.S. is negative, therefore

$$\int_{T}^{\infty} (t^{2} + \frac{1}{4})^{-1} \Xi(t) t^{2n} \cosh\left(\frac{1}{4}\pi t\right) dt < -\int_{0}^{T} (t^{2} + \frac{1}{4})^{-1} \Xi(t) t^{2n} \cosh\left(\frac{1}{4}\pi t\right) dt < KT^{2n}$$

where K is independent of n.

But by hypothesis $(\Xi(t) > 0 \text{ for } t \ge T)$, there is a positive m = m(T) where $\left(t^2 + \frac{1}{4}\right)^{-1}\Xi(t) \ge m \text{ for } 2T \le t \le 2T + 1$:

$$\int_{T}^{\infty} \left(t^2 + \frac{1}{4} \right)^{-1} \Xi(t) t^{2n} \cosh\left(\frac{1}{4}\pi t\right) dt \ge \int_{2T}^{2T+1} m t^{2n} dt \ge m (2T)^{2n}$$

Hence, $m2^{2n} < K$, which is false for sufficiently large n.

