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Introduction

Let No(T) denote the number of zeros p = 1 + iy of ((s). (T > 0)
Last time, we saw that No(T) — co as T — oo.
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Introduction

Let No(T) denote the number of zeros p = 1 + iy of {(s).
Last time, we saw that No(T) — co as T — oo.

(T >0)

Hardy and Littlewood (1921) proved Ny(T) > T: Their essential idea is to
divide the interval (T, 2T) in pairs of abutting intervals, and prove that each

abutting interval contains a zero

Selberg later improved this, first (1942a) to Ny(7) > T loglog T and then
(1942b) Ny(T) > T'log T, so that a positive proportion of the zeros are on the
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Introduction

Let No(T) denote the number of zeros p = 1 + iy of ((s). (T > 0)
Last time, we saw that No(T) — co as T — oo.

Hardy and Littlewood (1921) proved Ny(T) > T: Their essential idea is to
divide the interval (T, 2T) in pairs of abutting intervals, and prove that each
abutting interval contains a zero

Selberg later improved this, first (1942a) to No(T) > T loglog T and then
(1942b) Nyo(T) > T'log T, so that a positive proportion of the zeros are on the
critical line. )

On the Riemann Hypothesis:

1
No(T) = N(T) ~ %TlogT
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Introduction
Let No(T) denote the number of zeros p = 1 + iy of ((s). (T > 0)
Last time, we saw that No(7) — oo as T — oo.

Hardy and Littlewood (1921) proved Ny(T) > T: Their essential idea is to
divide the interval (7, 2T) in pairs of abutting intervals, and prove that each
abutting interval contains a zero

Selberg later improved this, first (1942a) to No(T) > T loglog T and then
(1942b) Nyo(T) > T'log T, so that a positive proportion of the zeros are on the
critical line.

On the Riemann Hypothesis:

1
No(T) = N(T) ~ %TlogT

Selberg’s (1942b) proof modifies Hardy and Littlewood’s (1921) proof by
employing a general case of the Fourier transformations used in their (1921)
paper. He then maneuvered these transforms to prove this Theorem
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Fourier Transformations

Let F(u), f(y) be functions related by the Fourier formulae

1 o . 1 o0 .
U) = —— e = u)e ™ du
Al =~ / S0l 0= s / G




Fourier Transformations
Let F(u), f(y) be functions related by the Fourier formulae

W= [ _Semar 0= o [ P
Integrating over (z,¢ + H), we obtain
t+H eV ,
/l F(u)du = m / eV dy,

iyH

t+H
so that / F(u)du and f(y) ¢ are Fourier transforms.
t

iy




Fourier Transformations
Let F(u), f(y) be functions related by the Fourier formulae

tyu u) e—tyu du

(u) = \/7/ f f(y):\/%/_zF

Integrating over (z,¢ + H), we obtain

t+H zyH 1.
F(u) du = / —ely’d ,
| rw Tﬂ y

iyH
are Fourier transforms.

t+H e
so that / F(u) du and f(y)
t

Parseval’'s Theorem of the normal form gives (for F(u) real, f(y) even):

/- /ZHHF(u)duzdr:/oo 0w

iy

s iy

(1)

4
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Fourier Transformations
Let F(u), f(y) be functions related by the Fourier formulae

lyu u) e—tyu du

(u) = \/7/ f f(y):\/%/_zF

Integrating over (z,¢ + H), we obtain

t+H AL A
F(u) du = / —ely’d ,
| = y

iyH
are Fourier transforms.

t+H e
so that / F(u) du and f(y)
t

Parseval’'s Theorem of the normal form gives (for F(«) real, f(y) even):

iy

00 +H 2 ) M o0 4sin?(LH
[ Fwad a= [~ o= o= [T ot e
i )P
2 2 1
<2 [ 110 dy+8/l/H W (1)
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Some Definitions Selberg used to Improve the Result

Define «,, by
1 . a
= —Z (O' > 1)’ o] = 1
R

Then we see from the Euler product that o, oo, = ay, if (11, v) = 1.
(i.e. ais multiplicative!)

W
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Some Definitions Selberg used to Improve the Result

Define «,, by
1 . a
= —Z (O' > 1)’ o] = 1
R

Then we see from the Euler product that o, oo, = ay, if (11, v) = 1.
(i.e. ais multiplicative!)

Since the series for (1 — z)~2 dominates that for (1 — z)2:

c9 !
IVGOEDD i— o) =1,then on | < o, < 1
v=1
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Some Definitions Selberg used to Improve the Result

Define «,, by
1 . a
= —Z (O' > 1)’ o] = 1
R

Then we see from the Euler product that a, oo, = oy, if (11, ) = 1.
(i.e. ais multiplicative!)

Since the series for (1 — z)~* dominates that for (1 —z)2:

c9 !
IVGOEDD i— o) =1,then on | < o, < 1
v=1

log v
v = Qy 1— IS X
h @ ( logX> ( 2 < 2

Hence, all sums involving 8, run over [1, X] become:
(as we may assume 3, = 0 for v > X)

ols) =3

l/S
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Preliminaries 1/3

c+ioco
D(z) := % y F(%S)W*ESC(S)QS(SM(I —5)Z’ ds where ¢ > 1

V.
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Preliminaries 1/3

c+ioco
D(z) := % y F(%s)wfésg“(s)qﬁ(s)(j)(l —5)Z’ ds where ¢ > 1

Move the line of integration to o = 1 and evaluate the residue at s = 1:

%-H'oo
B(2) = 520(106(0) + 3 [

4ri oo

D(55) 7 #C(s)9(s)6(1 — 5)2*ds
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c+ioco
D(z) := % y F(%s)wfésg“(s)qﬁ(s)(j)(l —5)Z’ ds where ¢ > 1

Move the line of integration to o = 1 and evaluate the residue at s = 1:

%-H'oo :
8(2) = 328000 + 7= [ T(55)mFe0)o)0(1 - 9 ds

Ami J1_iso
2
1 liico — 2
2z 2 2() | »
= —z4(1)p(0) + =— (— t) " dr
w0+ 5 [ el i) -
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Preliminaries 1/3

c+ioco
D(z) := % F(%s)wféSC(s)qﬁ(s)(j)(l —5)Z’ ds where ¢ > 1

c—ioco

Move the line of integration to o = 1 and evaluate the residue at s = 1:
1 I LS N
B(2) = 320(10000) + 3 [ D(3)m Fe(0)o0(1 ~ 92 ds
2

4mi Ji i
— oo + = | 20 L

1
2 I —ico [2—|— 7

2
Ztt dt

On the other hand, by definition of ¢:

B@) =3 > S S4B |

n=1 pn v c—ico

c+ico 1

r (Es) w_%sz—zs ds

y
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1 I LS N
B(2) = 320(10000) + 3 [ D(3)m Fe(0)o0(1 ~ 92 ds
2

4mi Ji i
— oo + = | 20 L

1
2 I —ico [2—|— 7

2
Ztt dt

On the other hand, by definition of ¢:

@(z):%ME_ZIZZMV/

c—ico

€o 2,2
=Y Ty e (- ) ®

n=1 p v

c+ico
1
(bt L _ca
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Preliminaries 2/3

Putting z = (729~ it follows that the functions:

I SR=(O N Y2 S ey
F(t) = ot ¢(§+lz) e
_ 1 _ -1 G Buﬁu
F) =520(D6(0) =272 > > > -
n=1 p v

are Fourier transforms.

v
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Preliminaries 2/3

Putting z = (729~ it follows that the functions:

_ 1 E@ 1A Lr_Ls)
0= syl o) ®
] = . 2,2
1) = 320()00) ~ = F ST A (TR g
n=1 p v

are Fourier transforms.

Inserting y = logx, G = ¢'/" in (1) with F() and f(y) defined above for H < 1,
the first integral on the right equals to

G| ,—i(in—19) 59 2,2 2
e~ Gm—2 BBy TRU” (lr_5) 2
/ T¢(1)¢(O)—ZZZTGXP<—Z27€ 2 x) dx
1 n=1 p v
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Preliminaries 2/3

Putting z = (729~ it follows that the functions:

= 1 §T—30)t
= ) o
1) = 5220Mo(0) ~ et TS A (LT g
n=1 p v

are Fourier transforms.

Inserting y = logx, G = ¢'/" in (1) with F() and f(y) defined above for H < 1,
the first integral on the right equals to

G
J
Calling the triple sum g(x), then the above equation is not greater than:

/] HOAOE - +2/ sP dr < 31o(D00)F +2 [ sl ds

) —~ 2,2 2
()60 =YY" z @ exp (— T2 othn-0) )

n=1 p

dx

4
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Preliminaries 3/3
o0 2.2
80 = 3 Y030 O e (- TR phr02)
n=1

noov

V.
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Preliminaries 3/3
9= 3 Bl g (- T i)

n=1 p v
Similarly, we can show that the second integral in (1) does not exceed

IO, [~ lsF
2Glog’ G ¢ logx

Justin Scarfy (UBC) Zeros On the Critical Line I February 23, 2011 7/12



Preliminaries 3/3
9= 3 Bl g (- T i)

n=1 p v
Similarly, we can show that the second integral in (1) does not exceed

16(1)o(0) = ls@)I?
2Glog’ G +2/G log” x x

We thus obtained upper bounds for integrals (1) as § — 0,
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Preliminaries 3/3
9= 3 Bl g (- T i)

n=1 p v
Similarly, we can show that the second integral in (1) does not exceed

16(1)o(0) = lg@)?
2Glog’ G +2/G log” x x

We thus obtained upper bounds for integrals (1) as 6 — 0, but if we consider:

J(x, 0) = /|(u)|2u—9du (O<9§%,1§x)

e 2,2 )
= E E E 5;4[53\5#51// exp{—ﬂ(m)\f —}-n'l; )u2sin5
m=1 n=1 KApv x v
rmPR? nzuz 2 du
+z7r( YR )u cosé}u—e

and let ), denote the sum of those terms in which mr /X = np /v,
and ), the remainder.

V.
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Estimates of > °, and ), for J(x, #) converges uniformly

. ﬁmﬁxﬂ B, [T mK? . ) du
2o .—Y;M\ZW —— /x exp{—Zw( P )uzsmé}F
Yo =Jdx0) =

v
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Estimates of > °, and ), for J(x, #) converges uniformly

, ﬁmﬁxﬂ B [ mR*\ 5 .\ du
> .—Y;M\ZW e /x exp{—Zw( 7 >uzsm6}ﬁ
Yo =Jx0) =3

It is shown that

1 (62xX2)® } {xlelog(X/H) e o }
2 (529x9 logX> {629x9 log X 0 £
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Estimates of > °, and ), for J(x, #) converges uniformly

0 P
Zl o= Z Z ﬁmﬁ)\ﬂuﬁu/ eXp{ _ 271_(7’}'1A
m=1 KApv *
0 =J0x0) =3,

It is shown that

1 (62xX2)® } {
=0 = T Yoo tO
2 (529x910gX> {629x910gX

K™\ o . du
0 p—
5 >u sin }u9

x'~%log(X/6)

0

x? log2X}

We may ultimately take X = 6 ¢, and H = (alog X)~', where « and ¢ are

suitable positive constant. Then G = X¢ = §—*.
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Estimates of > °, and ), for J(x, #) converges uniformly

Z Z ﬁfeﬁ)\ﬂuﬁu /oo exp{ _ 27T(m/\f

m=1 KApv
2o =J(x0) -3,

It is shown that

1
2 (529x910gX>

We may ultimately take X =
suitable positive constant. Then G = X¢ = §—*.

P

)uzsiné}d—lg
u

X

{ (l§%xX2)9 }+ . {xlolog(X/H)
020x% log X 0

§ ¢, and H = (alogX)~!, where a a

can be omitted with the first if GX> = O(5~2) i.e. if (a +2)c < 1,

1
=0\ 577
2 (529x910gX>

x? long}

nd c are

If x < G, the last two terms

we have:

v
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m=1 KApv
2o =J(x0) -3,

It is shown that

1
2 (529x910gX>

We may ultimately take X =
suitable positive constant. Then G = X¢ = §—*.

P

)uzsiné}d—lg
u

X
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{ (15 xX?) }+O{x log(X/0)
020x9 log X 0

§ ¢, and H = (alogX)~!, where a a

can be omitted with the first if GX> = O(5~%) i.e. if (a +2)c < 1,

1
=0\ 577
2 <5zox910gX>

andfor X =67¢, with0 <c¢ <

D= O{% Z (ilog

KAV

1
8

I 1 1 X4 1
— log? — 2 log? =
5+ " og 5)} O<x9 log 5)

x? long}

nd c are

If x < G, the last two terms

we have:
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Estimates for integrals over the Fourier formulae

Under the assumption of the estimate of >, and ), from the previous slide,

we can deduce that

/t+H F(u)du Zdt = (’)(L) (5)

(ﬁlogX

L.
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Estimates for integrals over the Fourier formulae

Under the assumption of the estimate of >, and ), from the previous slide,

we can deduce that

/t+H F(u)du 2a’t = (’)(L) (5)

(ﬁlogX

L.

Similarly, one can show that:

/Oo {/IM |F(u)|du}2dt: o(ik’lg—(f;f)) (6)

— 00
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Estimates for integrals over the Fourier formulae

Under the assumption of the estimate of >, and ), from the previous slide,

we can deduce that

/_o; /ﬁH F(u) d] i = o() (5)

(ﬁlogX

Lemma 4
Similarly, one can show that:
o t+H 2 2
/ { / F ()| du} dr — O(M> (6)
— UJs 02 logX

The proofs of these Lemmas use the property that J(x, 6) is uniformly
convergent with respect to 6, and then taking special values of the x’s and the
0’s.

V.
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Theorem (Selberg 1942b)

No(T) > TlogT
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Theorem (Selberg 1942b)
No(T) > TlogT

Proof of Theorem (1/3)
Let E be the subset of (0, T), where

/tH_h |F(u)|du > ‘/H_hF(u)du

t
For such values ¢, F(u) must change sign in (z,7 + &), then so does =(r).

4
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Theorem (Selberg 1942b)
No(T) > TlogT

Proof of Theorem (1/3)
Let E be the subset of (0, T), where

/H_h |F(u)|du > ‘/H_hF(u)du

t t
For such values ¢, F(u) must change sign in (z,7 + &), then so does =Z(r).
Since the two sides of the following are equal expect in E:
b

/d:/ |du>/E{/tt+h \F ()| du — /tHhF(u)du

(7)

4
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Theorem (Selberg 1942b)
No(T) > TlogT

Proof of Theorem (1/3)
Let E be the subset of (0, T), where

/H_h |F(u)|du > ‘/H_hF(u)du

t t
For such values ¢, F(u) must change sign in (z,7 + &), then so does =Z(r).
Since the two sides of the following are equal expect in E:
b

/dt/w] |du>/E{/tt+h \F ()| du — /tHhF(u)du
:/OT{[H \F ()| dut — /ttJth(u)du }dt
dr @)

. T | pith
> AhT* — / / F(u) du
t

JO

4
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Proof of Theorem (2/3)
By Lemma 4 with 6 = 1/7, we obtain an upper bound:

1
2
/ dt / w)| du < { / dt / / |du) dt} Cauchy — Schwarz
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Proof of Theorem (2/3)
By Lemma 4 with 6 = 1/7, we obtain an upper bound:

/ dt / o w)| du < { / dt / / |du) dt}; Cauchy — Schwarz
<Ly [ ([ Fw >|du)2dt};

< A{m(E)} hT? (;Zi;) (®)
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Proof of Theorem (2/3)
By Lemma 4 with 6 = 1/7, we obtain an upper bound:

/ dt / o Fu)|du < { / dt / / |du) dt}; Cauchy — Schwarz
<{n@ [ ([ >|du)2dr};

< A{m(E)} hT? (;Zi;) (®)

By Lemma 3, we see that

T t+h t+h 2 !
/ {/ |F(u)| du — / F(u) }dl<{ dt u) du dt}
JO Jt t

Ah2 T3
— 9
log2 X
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Proof of Theorem (3/3)
Therefore, by (7), (8), (9)

where A; and A, denote the particular constants which occur.
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Proof of Theorem (3/3)
Therefore, by (7), (8), (9)

where A; and A, denote the particular constants which occur.
Since X = T¢and h = (alog X) '
{m(E)} > ATT — Ay(ac)iT?

Taking a small enough, it follows: m(E) > AsT.

Justin Scarfy (UBC) Zeros On the Critical Line I February 23, 2011

12/12



Proof of Theorem (3/3)
Therefore, by (7), (8), (9)

where A; and A, denote the particular constants which occur.
Since X = T¢ and i = (alog X)~!
{m(E)} > ATT — Ay(ac)iT?
Taking a small enough, it follows: m(E) > AsT.
Hence, of the partitions (0, iz , (h, 2h) . contained in (0, T), at least [A3T/h]

must contain points of E. If (nh, (n + l)h) contains a point 7 of E, a zero of
¢(% + iu) mustbe in (t,1+ h), and so does (nh, (n + 2)h)

4
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Proof of Theorem (3/3)
Therefore, by (7), (8), (9)

where A; and A, denote the particular constants which occur.
Since X = T¢ and 1 = (alog X)~!
{m(E)} > ATT — Ay(ac)iT?
Taking a small enough, it follows: m(E) > AsT.
Hence, of the partitions (0, &), (A, 2h) . contained in (0, T), at least [A3T/h]
must contain points of E. If (nh, (n+ l)h) contains a point ¢ of E, a zero of

(% + iu) must be in (7 + k), and so does (nh, (n + 2)h)

Recall the fact that each zero might be counted twice this way, there must be
atleast 1[AsT/h] > AT log T zeros in (0,T) O

4
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