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Introduction

Let N0(T) denote the number of zeros ρ = 1
2 + iγ of ζ(s). (T > 0)

Last time, we saw that N0(T)→∞ as T →∞.

Hardy and Littlewood (1921) proved N0(T)� T: Their essential idea is to
divide the interval (T, 2T) in pairs of abutting intervals, and prove that each
abutting interval contains a zero

Selberg later improved this, first (1942a) to N0(T)� T log log T and then
(1942b) N0(T)� T log T, so that a positive proportion of the zeros are on the
critical line.

On the Riemann Hypothesis:

N0(T) = N(T) ∼ 1
2π

T log T

Selberg’s (1942b) proof modifies Hardy and Littlewood’s (1921) proof by
employing a general case of the Fourier transformations used in their (1921)
paper. He then maneuvered these transforms to prove this Theorem
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Fourier Transformations
Let F(u), f (y) be functions related by the Fourier formulae

F(u) =
1√
(2π)

∫ ∞
−∞

f (y)eiyu dy f (y) =
1√
(2π)

∫ ∞
−∞

F(u)e−iyu du

Integrating over (t, t + H), we obtain∫ t+H

t
F(u) du =

1√
(2π)

∫ ∞
−∞

f (y)
eiyH − 1

iy
eiyt dy,

so that
∫ t+H

t
F(u) du and f (y)

eiyH − 1
iy

are Fourier transforms.

Parseval’s Theorem of the normal form gives (for F(u) real, f (y) even):∫ ∞
−∞

∣∣∣∣ ∫ t+H

t
F(u) du

∣∣∣∣2 dt =

∫ ∞
−∞

∣∣∣ f (y)
eiyH − 1

iy

∣∣∣2 dy

=

∫ ∞
−∞
| f (y)|2

4 sin2( 1
2 Hy)

y2 dy

≤ 2H2
∫ 1/H

0
| f (y)|2 dy + 8

∫ ∞
1/H

| f (y)|2

y2 dy

(1)
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Some Definitions Selberg used to Improve the Result
Define αν by

1√
ζ(s)

=

∞∑
ν=1

αν
νs (σ > 1), α1 = 1

Then we see from the Euler product that αµ αν = αµν if (µ, ν) = 1.
(i.e. α is multiplicative!)

Since the series for (1− z)−
1
2 dominates that for (1− z)

1
2 :

If
√
ζ(s) =

∞∑
ν=1

α′ν
νs , α′1 = 1, then |αν | ≤ α′ν ≤ 1

βν := αν

(
1− log ν

log X

)
(1 ≤ ν < X)

Hence, all sums involving βν run over [1, X] become:
(as we may assume βν = 0 for ν ≥ X)

φ(s) :=
∑ βν

νs
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Preliminaries 1/3

Φ(z) :=
1

4πi

∫ c+i∞

c−i∞
Γ
(1

2
s
)
π−

1
2 sζ(s)φ(s)φ(1− s)zs ds where c > 1

Move the line of integration to σ = 1
2 and evaluate the residue at s = 1:

Φ(z) =
1
2

zφ(1)φ(0) +
1

4πi

∫ 1
2 +i∞

1
2−i∞

Γ
(1

2
s
)
π−

1
2 sζ(s)φ(s)φ(1− s)zs ds

=
1
2

zφ(1)φ(0) +
z

1
2

2π

∫ 1
2 +i∞

1
2−i∞

Ξ(t)
t2 + 1

4

∣∣∣∣φ(1
2

+ it
)∣∣∣∣2zit dt

On the other hand, by definition of φ:

Φ(z) =
1

4πi

∞∑
n=1

∑
µ

∑
ν

βµβν

∫ c+i∞

c−i∞
Γ
(1

2
s
)
π−

1
2 s zs

nsµsν1−s zs ds

=
∞∑

n=1

∑
µ

∑
ν

βµβν
ν

exp
(
− πn2µ2

z2ν2

)

(2)
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Preliminaries 2/3
Putting z = e−i( 1

4π−
1
2 δ)−y, it follows that the functions:

F(t) =
1√
(2π)

Ξ(t)
t2 + 1

4

∣∣∣∣φ(1
2

+ it
)∣∣∣∣2e(

1
4π−

1
2 δ)t (3)

f (y) =
1
2

z
1
2φ(1)φ(0)− z−

1
2

∞∑
n=1

∑
µ

∑
ν

βµβν
ν

exp
(
− πn2µ2

z2ν2

)
(4)

are Fourier transforms.

Inserting y = log x, G = e1/H in (1) with F(t) and f (y) defined above for H ≤ 1,
the first integral on the right equals to∫ G

1

∣∣∣∣e−i( 1
4π−

1
2 δ)

2x
φ(1)φ(0)−

∞∑
n=1

∑
µ

∑
ν

βµβν
ν

exp
(
− πn2µ2

z2ν2 ei( 1
2π−δ)x2

)∣∣∣∣2 dx

Calling the triple sum g(x), then the above equation is not greater than:

2
∫ G

1

|φ(1)φ(0)|2

4x2 dx + 2
∫ G

1
|g(x)|2 dx <

1
2
|φ(1)φ(0)|2 + 2

∫ G

1
|g(x)|2 dx

Justin Scarfy (UBC) Zeros On the Critical Line II February 23, 2011 6 / 12



Preliminaries 2/3
Putting z = e−i( 1

4π−
1
2 δ)−y, it follows that the functions:

F(t) =
1√
(2π)

Ξ(t)
t2 + 1

4

∣∣∣∣φ(1
2

+ it
)∣∣∣∣2e(

1
4π−

1
2 δ)t (3)

f (y) =
1
2

z
1
2φ(1)φ(0)− z−

1
2

∞∑
n=1

∑
µ

∑
ν

βµβν
ν

exp
(
− πn2µ2

z2ν2

)
(4)

are Fourier transforms.

Inserting y = log x, G = e1/H in (1) with F(t) and f (y) defined above for H ≤ 1,
the first integral on the right equals to∫ G

1

∣∣∣∣e−i( 1
4π−

1
2 δ)

2x
φ(1)φ(0)−

∞∑
n=1

∑
µ

∑
ν

βµβν
ν

exp
(
− πn2µ2

z2ν2 ei( 1
2π−δ)x2

)∣∣∣∣2 dx

Calling the triple sum g(x), then the above equation is not greater than:

2
∫ G

1

|φ(1)φ(0)|2

4x2 dx + 2
∫ G

1
|g(x)|2 dx <

1
2
|φ(1)φ(0)|2 + 2

∫ G

1
|g(x)|2 dx

Justin Scarfy (UBC) Zeros On the Critical Line II February 23, 2011 6 / 12



Preliminaries 2/3
Putting z = e−i( 1

4π−
1
2 δ)−y, it follows that the functions:

F(t) =
1√
(2π)

Ξ(t)
t2 + 1

4

∣∣∣∣φ(1
2

+ it
)∣∣∣∣2e(

1
4π−

1
2 δ)t (3)

f (y) =
1
2

z
1
2φ(1)φ(0)− z−

1
2

∞∑
n=1

∑
µ

∑
ν

βµβν
ν

exp
(
− πn2µ2

z2ν2

)
(4)

are Fourier transforms.

Inserting y = log x, G = e1/H in (1) with F(t) and f (y) defined above for H ≤ 1,
the first integral on the right equals to∫ G

1

∣∣∣∣e−i( 1
4π−

1
2 δ)

2x
φ(1)φ(0)−

∞∑
n=1

∑
µ

∑
ν

βµβν
ν

exp
(
− πn2µ2

z2ν2 ei( 1
2π−δ)x2

)∣∣∣∣2 dx

Calling the triple sum g(x), then the above equation is not greater than:

2
∫ G

1

|φ(1)φ(0)|2

4x2 dx + 2
∫ G

1
|g(x)|2 dx <

1
2
|φ(1)φ(0)|2 + 2

∫ G

1
|g(x)|2 dx

Justin Scarfy (UBC) Zeros On the Critical Line II February 23, 2011 6 / 12



Preliminaries 3/3

g(x) :=

∞∑
n=1

∑
µ

∑
ν

βµβν
ν

exp
(
− πn2µ2

z2ν2 ei( 1
2π−δ)x2

)

Similarly, we can show that the second integral in (1) does not exceed

|φ(1)φ(0)|2

2G log2 G
+ 2

∫ ∞
G

|g(x)|2

log2 x
dx

We thus obtained upper bounds for integrals (1) as δ → 0, but if we consider:
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x
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κλµν

βκβλβµβν
λν
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Estimates of
∑

1 and
∑

2 for J(x, θ) converges uniformly

∑
1 :=

∞∑
m=1

∑
κλµν

βκβλβµβν
λν

∫ ∞
x

exp
{
− 2π

(m2κ2

λ2

)
u2 sin δ

}
du
uθ∑

2 := J(x, θ)−
∑

1

It is shown that∑
1 = O

(
1

δ
1
2 θxθ log X

)
+O

{
(δ

1
2 xX2)θ

δ
1
2 θxθ log X

}
+O

{
x1−θ log(X/θ)

θ
X2 log2 X

}
We may ultimately take X = δ−c, and H = (a log X)−1, where a and c are
suitable positive constant. Then G = Xa = δ−ac. If x ≤ G, the last two terms
can be omitted with the first if GX2 = O(δ−

1
2 ) i.e. if (a + 2)c ≤ 1

4 , we have:∑
1 = O

(
1

δ
1
2 θxθ log X

)
and for X = δ−c, with 0 ≤ c ≤ 1

8∑
2 = O

{
1
xθ
∑
κλµν

(λ
κ

log
1
δ

+
1
κµ

log2 1
δ

)}
= O

(
X4

xθ
log2 1

δ

)
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Estimates for integrals over the Fourier formulae

Lemma 3
Under the assumption of the estimate of

∑
1 and

∑
2 from the previous slide,

we can deduce that∫ ∞
−∞

∣∣∣∣ ∫ t+H

t
F(u) du

∣∣∣∣2 dt = O
( h

δ
1
2 log X

)
(5)

Lemma 4
Similarly, one can show that:∫ ∞

−∞

{∫ t+H

t
|F(u)| du

}2

dt = O
(h2 log(1/δ)

δ
1
2 log X

)
(6)

The proofs of these Lemmas use the property that J(x, θ) is uniformly
convergent with respect to θ, and then taking special values of the x’s and the
θ’s.
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Theorem (Selberg 1942b)
N0(T)� T log T

Proof of Theorem (1/3)
Let E be the subset of (0,T), where∫ t+h

t
|F(u)| du >

∣∣∣∣ ∫ t+h

t
F(u) du

∣∣∣∣
For such values t, F(u) must change sign in (t, t + h), then so does Ξ(t).

Since the two sides of the following are equal expect in E:∫
E

dt
∫ t+h

t
|F(u)| du ≥

∫
E

{∫ t+h

t
|F(u)| du−

∣∣∣∣ ∫ t+h

t
F(u) du

∣∣∣∣} dt

=

∫ T

0

{∫ t+h

t
|F(u)| du−

∣∣∣∣ ∫ t+h

t
F(u) du

∣∣∣∣} dt

> AhT
3
4 −

∫ T

0

∣∣∣∣ ∫ t+h

t
F(u) du

∣∣∣∣ dt

(7)
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Proof of Theorem (2/3)
By Lemma 4 with δ = 1/T, we obtain an upper bound:∫

E
dt
∫ t+h

t
|F(u)| du ≤

{∫
E

dt
∫

E

(∫ t+h

t
|F(u)| du

)2
dt
} 1

2

Cauchy− Schwarz

≤
{

m(E)

∫ ∞
−∞

(∫ t+h

t
|F(u)| du

)2
dt
} 1

2

< A{m(E)} 1
2 hT

1
4

( log T
log X

) 1
2

(8)

By Lemma 3, we see that∫ T

0

{∫ t+h

t
|F(u)| du−

∣∣∣∣ ∫ t+h

t
F(u) du

∣∣∣∣} dt ≤
{∫ T

0
dt
∫ T

0

∣∣∣∣ ∫ t+h

t
F(u) du

∣∣∣∣2 dt
} 1

2

<
Ah

1
2 T

3
4

log
1
2 X

(9)
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Proof of Theorem (3/3)
Therefore, by (7), (8), (9)

{m(E)} 1
2 > A1T

1
2

( log X
log T

) 1
2 − A2

T
1
2

h
1
2 log

1
2 T

,

where A1 and A2 denote the particular constants which occur.

Since X = Tc and h = (a log X)−1:

{m(E)} 1
2 > A

1
2
1 T

1
2 − A2(ac)

1
2 T

1
2

Taking a small enough, it follows: m(E) > A3T.

Hence, of the partitions (0, h), (h, 2h), ... contained in (0,T), at least [A3T/h]
must contain points of E. If (nh, (n + 1)h) contains a point t of E, a zero of
ζ( 1

2 + iu) must be in (t, t + h), and so does (nh, (n + 2)h)

Recall the fact that each zero might be counted twice this way, there must be
at least 1

2 [A3T/h] > AT log T zeros in (0,T)
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Hence, of the partitions (0, h), (h, 2h), ... contained in (0,T), at least [A3T/h]
must contain points of E. If (nh, (n + 1)h) contains a point t of E, a zero of
ζ( 1

2 + iu) must be in (t, t + h), and so does (nh, (n + 2)h)

Recall the fact that each zero might be counted twice this way, there must be
at least 1

2 [A3T/h] > AT log T zeros in (0,T)
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Proof of Theorem (3/3)
Therefore, by (7), (8), (9)

{m(E)} 1
2 > A1T

1
2

( log X
log T

) 1
2 − A2

T
1
2

h
1
2 log

1
2 T

,

where A1 and A2 denote the particular constants which occur.

Since X = Tc and h = (a log X)−1:

{m(E)} 1
2 > A

1
2
1 T

1
2 − A2(ac)

1
2 T

1
2

Taking a small enough, it follows: m(E) > A3T.

Hence, of the partitions (0, h), (h, 2h), ... contained in (0,T), at least [A3T/h]
must contain points of E. If (nh, (n + 1)h) contains a point t of E, a zero of
ζ( 1

2 + iu) must be in (t, t + h), and so does (nh, (n + 2)h)

Recall the fact that each zero might be counted twice this way, there must be
at least 1

2 [A3T/h] > AT log T zeros in (0,T)
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