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Background

The Generalized Riemann Hypothesis (GRH) asserts that all the nontrivial
zeros of any Dirichlet L-function, lie on the critical line σ = 1

2 , where s = σ + it

Further, it is believed that there are no Q-linear relations among the
nonnegative ordinates of these zeros. In particular, it is expected that
L( 1

2 , χ) 6= 0 for all primitive characters χ, but this remains unproved.

At s = 1
2 , the so called Critical Point, is shown that L(s, χ) is non-vanishing for

infinitely many χ, first by M. Jutila in 1981.

Jutila’s proof involves using the (approximate) functional equation for L(s, χ),
and comparing the mean and the mean square to the averages of∑

χ mod q

L(
1
2
, χ)

where χ is defined modulo a prime q, and then establish an asymptotic
formula for the sum L(s, χD), where χD is the real characters given by

(D
·
)
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Prelimaries
An Approximate Functional Equation for L(1

2 , χ)

When <(s) > 1, it is obvious there is some integer N with

L(s, χ) =
∑
n<Nq

χ(n)n−s +
∑
n>Nq

χ(n)n−s

Using technologies including analytic continuation and mollification, one can
move close the critical point and sharpen the result to

L(
1
2
, χ) ∼

∑
n<
√

q

χ(n)√
n

Revisiting the Pólya-Vinogradov Inequality
Recall the Pólya-Vinogradov inequality states that:∑

y<n≤x

χ(n)� q
1
2 log q
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Improving the Estimates

It is possible to remove the factor log q completely in Pólya-Vinogradov’s
estimate if we work with even characters

For a character of any parity, it is possible to eliminate the log q factor if we
study the average of the mean square.

Their estimates are obtained in the following two lemmas:

Lemma 1 ∑∗

0<d≤Y

L(
1
2
, χd) = c1Y log Y + c2Y + O(Y

3
4 +ε)

where the sum is over fundamental discriminates.

Lemma 2 ∑∗

0<d≤Y

L(
1
2
, χd)2 = c3Y(log Y)3 + O(Y(log Y)

5
2 +ε)
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Average value of L(1
2 , χD)

Theorem
Let N(Y) denote the number of fundamental discriminates 0 < d ≤ Y such that
L( 1

2 , χ) 6= 0, then
N(Y)� Y/ log Y

In other words, there are infinitely many L-functions non-vanishing at the
critical point. i.e. N(Y) tends to∞ as Y →∞

Proof of the Theorem
By Cauchy-Schwarz,∣∣∣∣∣ ∑∗

0<d≤Y

L(
1
2
, χd)

∣∣∣∣∣
2

�

( ∑∗

0<d≤Y

L(
1
2
, χd)2

)( ∑∗

0<d≤Y

1

)

=

( ∑∗

0<d≤Y

L(
1
2
, χd)2

)
N(Y)

Lemmas 1 and 2 imply that

Y2(log Y)2 � Y(log Y)3N(Y)
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Set up and the Functional Equation for L(1
2 , χ)

Proof of Lemma 1 (1/6)
Let

fY(n,w) :=
∑∗

0<d≤Y

(d
n

) dw

fY(n) := fY(n, 0) =
∑∗

0<d≤Y

(d
n

)

For a real primitive character χ mod q > 1 and an X ≥ 1 we have the identity
follows easily from the functional equation:

L(
1
2
, χ) =

∞∑
n=1

χ(n) exp(−n/X)n−
1
2

− 1
2πi

∫
(− 1

2−ε)
L(

1
2
− s, χ)

( q
π

)−s Γ( 1
2 (a + 1

2 − s))

Γ( 1
2 (a + 1

2 + s))Γ(s)Xs
ds

where a = 1
2 (1− χ(−1))
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Definitions of S and I

Proof of Lemma 1 (2/5)
If we sum over χ corresponding to d > 0, and observing that a = 0 in this
case, we obtain:

∑∗

0<d≤Y

L(
1
2
, χd) =

∞∑
n=1

fY(n) exp(−n/X)n−
1
2

− 1
2πi

∫
(− 1

2−ε)

∞∑
n=1

(
fY(n,−s)ns− 1

2

)
πs Γ( 1

4 −
s
2 )

Γ( 1
4 + s

2 )
Γ(s)Xs ds

:=S− I

When n is a square, we have

fY(n) = cnY + O(Y
1
2 d(n))

with cn =
3
π2

∏
p|n

(1 +
1
p

)−1
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Estimates for S

Proof of Lemma 1 (3/5)
For <(s) > 0,

fY(n, s) = cn
Y1+s

1 + s
+ O((|s|+ 1)d(n)Y

1
2 +σ)

Apply this to S: the square integers n contribute an amount:

∞∑
m=1

(cmY + O(Y
1
2 d(m2))) exp (−m2/X)m−1

= Y
∞∑

m=1

cm

m
exp(−m2/X) + O(Y

1
2 (logX)3)

And the non-square integers contribute∑′

1≤n

fY(n) exp(−n/X)n−
1
2 � Y

1
2 X

1
2 (log X)

5
2
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Estimates for I

Proof of Lemma 1 (4/5)
In I, the squares contribute:

− 1
2

∫
(− 1

2−ε)

Y1−s

1− s
3
π2

∏
p

(
1− 1

(p + 1)p1−2s

)

ζ(1− 2s)πs Γ( 1
4 −

s
2 )

Γ( 1
4 + s

2 )
Γ(s)Xs ds + O(Y1+εX−

1
2−ε)

Calculation reveals that ζ(1− 2s)Γ(s) = − 1
2s2 + 3γ

2s − γ
2 + . . .

So the main term above is

−Y{c′′ + 3
π2

1
2

∏
p

(
1− 1

(p + 1)p

)
log X/Y + O((X/Y)

1
2−εε−1)}

One can show the non-squares’ contribution is

� ε−1Y1+εX−
1
2−ε
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Estimates for I

Proof of Lemma 1 (4/5)
In I, the squares contribute:

− 1
2
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2−ε)

Y1−s

1− s
3
π2

∏
p
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1− 1

(p + 1)p1−2s

)

ζ(1− 2s)πs Γ( 1
4 −

s
2 )

Γ( 1
4 + s
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Γ(s)Xs ds + O(Y1+εX−
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2s2 + 3γ

2s − γ
2 + . . .

So the main term above is

−Y{c′′ + 3
π2

1
2

∏
p

(
1− 1

(p + 1)p

)
log X/Y + O((X/Y)

1
2−εε−1)}

One can show the non-squares’ contribution is

� ε−1Y1+εX−
1
2−ε

Justin Scarfy (UBC) Dirichlet L-functions at s=1/2 March 28, 2011 9 / 12



An Upper Bound for
∑∗

0<d≤Y L(1
2 , χd)

Proof of Lemma 1 (5/5)
Adding up all the squares and the non-squares portions, we have:

S =
3

2π2

∏
p

(
1− 1

p(p + 1)

)
Y log X + c′Y + O(Y

1
2 X

1
2 (log X)

5
2

and

I = −Y

{
c′′ +

3
2π2

∏
p

(
1− 1

(p + 1)p

)
log X/Y + O((X/Y)

1
2−εε−1)

}
+ O(ε−1Y1+εX−

1
2−ε)

Choosing X = Y
1
2 gives Lemma 1
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A Lower Bound for
∑∗

0<d≤Y L(1
2 , χd)

2

Outline of Proof to Lemma 2 (1/2)
Again from the functional equation:∑∗

0≤d<Y

L(
1
2
, χd)2

=

∞∑
n=1

fY(n) exp(−n/X)n−
1
2

− 1
2πi

∫
(−3/4)

{ ∞∑
n=1

fY(n,−2s)d(n)ns− 1
2

}
Γ2( 1

4 −
s
2 )

Γ2( 1
4 + s

2 )
Γ(s)(π2X)s ds

:=S(X,Y) + I(X,Y)

Use the same idea as in the proof of Lemma 1, carefully estimate both the
square and non-squares contributions to S(X,Y) and I(X,Y), and then add
them up.
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Estimates for S(X,Y) and I(X,Y)

Outline of Proof to Lemma 2 (2/2)
By using the analogous method described in Lemmas 1’s proof, except with
more estimates with double sums where the outer ranges over square (and
non-square) integers n, and the inner over fundamental discriminants — we
obtain estimates:

S(X,Y)�
√

XY(log XY)5/2 log log XY + Y(log XY)−A

for any A > 0
I(X,Y) = cY(log Y)3 + O(Y(log Y)2)

where

c =
1

8π2

∏
p

(
1− 4p2 − 3p + 1

p4 + p3

)
6= 0

Here choose X = Y yields the result
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