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Outline

Introduction
During the seminars in this week, we developed the basic tools such as adèles and
idèles, reviewed the classical and disputed over the modern theory of Fourier
Analysis, picked up on a few theorems on classical field theory, and learned the
functional equations for the Hecke L-functions

Plan
In this concluding lecture of our three days seminar, we shall lightly investigate the
interplays between different L-function, namely those of Riemann, Dirichlet,
Hurwitz, Dedekind, Hecke, and Artin. Moreover, we shall get a glimpse of the
power of Langlands Program which was meant to unite and (extent) them all.

Disclaimer
The following investigation is by NO means complete, those left out include
mostly the ones named after things (e.g. L-Functions of Elliptic Curves)
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Riemann L-function (1/2)

Definition
For a complex variable s,

ζ(s) :=

∞∑
n=1

1

ns

Properties of Riemann L-function

ζ(s) is absolute convergent for <(s) > 1

ζ(s) can be written as a Euler Product, namely

ζ(s) =
∏

p prime

1

1− p−s

ζ(s) has a completed L-function (Riemann version):

Λ(s) := π−
s
2 s(s− 1)Γ

(s
2

)
ζ(s)
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Riemann L-function (2/2)

ζ(s) :=

∞∑
n=1

1

ns

where s is a complex variable

Properties of Riemann L-function [ctd]

Riemann proves the functional equation in his 1859 memoir:

Λ(1− s) = Λ(s)

ζ(s) has a simple pole at s = 1

Riemann Hypothesis

Every non-trivial zero of ζ(s), when written s = σ + it, lines on the vertical line
σ = 1

2
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Dirichlet L-function (1/2)

Definition
Let s ∈ C, χ be a primitive Dirichlet character modulo q.

L(s, χ) :=

∞∑
n=1

χ(n)

ns

Known properties of Dirichlet L-function

L(s, χ) is absolute convergent for <(s) > 1

L(s, χ) can be written as a Euler Product, namely

L(s, χ) =
∏

p prime

(1− χ(p)p−s)−1

L(s, χ) has a completed L-function:
Let κ := 1

2 (1− χ(−1)) (κ equals 0 if χ is even, and 1 when χ is odd)

Λ(s, χ) :=
(π
q

)− 1
2 (s+κ)

Γ
(1

2
(s+ κ)

)
L(s, χ)
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Dirchlet L-function (2/2)

L(s, χ) :=

∞∑
n=1

χ(n)n−s

Known properties of this L-function

L(s, χ) also has a functional equation:

Λ(1− s, χ̄) =
iκ
√
q

τ(χ)
Λ(s, χ)

where τ(χ) is the Gauss sum attached to χ:

τ(χ) :=
∑

x (mod q)

χ(x) exp(2iπx/q)

Generalized Riemann Hypothesis

All zeros of L(s, χ) lie on the line σ = 1
2 (s = σ + it)
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Dedekind L-function (1/3)

Definition

Let K be a number field with discriminant ∆K ,so that K/Q is a finite field
extension of degree d = [K : Q]. Denote OK the ring of integers in K. For every
ideal a = pa11 . . . patt , where the norm is given by Na = [OK : a], we define the
Dedekind L-function by

ζK(s) :=
∑
a

1

(Na)s

Known properties for Dedekind L-function

ζK(s) is absolute convergent for <(s) > 1

Since in OK there is unique factorization of ideals into products of prime
ideals, we obtain the analogous Euler product expression:

ζK(s) =
∏
p

(
1− 1

(Np)s

)−1
Remark: if K = Q, we recover the Riemann L-function, i.e. ζQ(s) = ζ(s)
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Dedekind L-function (2/3)

ζK(s) :=
∑
a

1

(Na)s

Known properties for Dedekind L-function

Recall the field K has d = rR + 2rC embeddings σ : K ↪→ C, rR real
embeddings and rC pairs of complex embeddings. Hecke used this ingredient
and proved an analytic continuation of ζK(s) to the complex plane:

ΓR(s) :=π−
s
2 Γ
(s

2

)
ΓC(s) :=2(2π)sΓ(s)

And the completed L-function here takes the form (Hecke version)

ΛK(s) := |∆K |
s
2 ΓR(s)

rRΓC(s)
rCζK(s)

Hence ζK(s) admits to a (surprisingly simple) functional equation:

ΛK(s) = ΛK(1− s)
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Dedekind L-function (3/3)

Known properties for Dedekind L-function

Hecke also showed that ζK(s) has only a simple pole at s = 1, and

lim
s→1

ζK(s) =
2rR(2π)rChR

ω
√
|∆K |

here h denotes the class number of K;

By the Dirichlet’s unit theorem, O×K is finitely generated abelian group, thus
it has a finite part and a free part, W ⊕ Zr with r = rR + rC − 1, the finite
part with rank ω = |W |, the number of roots of unity contain in K

We write the fundamental system of units by ε1, . . . εd . We have our
embeddings k → k(i) with 1 ≤ i ≤ r.
After order the embeddings by writing the real embeddings first, then write
the complex embeddings, and then write the conjugates of the complex
embeddings. We look at the determinant of a matrix involving the units and
call that the regulator:

R = det
(

log |ε(j)i |
)
1≤i,j≤r0
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Intermezzo: Hurwitz zeta-function

Definition

ζ(s, x) :=

∞∑
n=0

1

(n+ x)s

for 0 < x ≤ 1

Note that ζ(s, 1) = ζ(s), the Riemann L-function

Hurwitz introduced this to study Dirichlet L-functions:

L(s, χ) =

∞∑
n=1

χ(n)

ns

=

q∑
a=1

χ(a)
∑

n≡a (mod q)

1

ns

=

q∑
a=1

1

qs

∞∑
t=0

1

(t+ a
q )s
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Hecke L-function (1/2)

Definition using ideals

Take an ideal f of OK , and define the f-ideal class group as follows:
We say a ∼f b if there exists α, β ∈ OK such that (α)a = (β)b, α ≡ β (mod f),
and α/β is totally positive (all conjugates positive).

This gives rise to a finite group, the f-ideal ray class group. Let Hf denote this
group, and take a character χ : Hf → C×

We come at once to the Hecke L-function:

L(s, χ) :=
∑
a

χ(a)

(Na)s

Remarks

These series have analytic continuation, functional equation, and are entire if
χ is non-trivial.

Of course, we still have the notation of primitive character.
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and α/β is totally positive (all conjugates positive).

This gives rise to a finite group, the f-ideal ray class group. Let Hf denote this
group, and take a character χ : Hf → C×

We come at once to the Hecke L-function:

L(s, χ) :=
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(Na)s

Remarks

These series have analytic continuation, functional equation, and are entire if
χ is non-trivial.
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Hecke L-function (2/2)

Main Theorem of Class Field Theory

Given an algebric number field F and an ideal f of OF , there exists a field
extension Fg/F whose Galois group is isomorphic to Hf. Moreover, any finite
abelian extension of F is contained in some Ff

Remark
The above theorem, is an extension of the Kronecker-Weber Theorem, which
leads to answers of Hilbert’s 12th problem in some cases.

Kronecker-Weber Theorem

Every finite abelian extension of Q is contained in Q(ζq), the cyclotomic field.

Hilbert’s 12th problem

Extend the Kronecker-Weber Theorem on abelian extensions of the rational
numbers to any base number field.
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Artin L-function and Artin Map (1/4)

Preliminary Definitions

Let k be a number field, K be its finite Galois extension and G = Gal(K/k).
Recall that we have the ring of integers downstairs Ok and upstairs OK with
Ok ⊂ OK . Given p ∈ Ok we can write it upstairs: pOK = Pe1

1 . . .P
eg
g

Apply a σ ∈ G. The left hand side stays the same, namely pOK , while the right
hand side becomes σ(P1)e1 . . . σ(Pg)

eg . Thus G acts on {P1 . . .Pg} transitively.

Letting DP denote the decomposition group at P, namely {σ ∈ G : σ(P) = P},
we get the inertia group

IP = {σ ∈ G : σ(x) ≡ x (mod P) for all x ∈ OK}
We have IP is a normal subgroup of DP, and can study (OK/P)/(Ok/p) We get
a canonical isomorphism:

DP/IP ∼ Gal((OK/P)/(Ok/p))

It is cyclic: x 7→ xNp , σ(x) ≡ xNp (mod P). We have σP well-defined up to IP.
The Frobenius automorphism at P. The σPi

’s are all conjugate. Call σp the
conjugacy class of σgp , the Artin symbol at p.
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Artin L-function and Artin Map (2/3)

Definition of Artin L-function

Denote ρ : G→ GL(V ) to be a finite dimensional representation

L(s, ρ,K/k) =
∏
P

det
(

1− ρ(σP)NP−s|V IP
)−1

Artin’s Reciprocity Law

If ρ is 1-dimensional then there exists an f ∈ Ok and a character χ of Hf such that

L(s, ρ,K/k) = L(s, χ)

where L(s, χ) are the Hecke L-functions.

Hecke generalized Riemann’s results to abelian case, and proves Artin’s conjecture
in this case. If we analyze what the above is saying in the special case of a
quadratic extension (k = Q and K quadratic), we get the (classical) quadratic
reciprocity law.
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Artin L-function and Artin Map (3/4)

Brauer’s Induction Theorem
Given any character χ of a finite group G, there exist nilpotent subgroups Hi and
ψi, one-dimensional characters of Hi such that

χ =
∑
i

aiIndGHψi

with ai ∈ Z

Now we find

L(s, χ,K/k) =
∏

L(s, IndGHψi,K/k)ai

=
∏
i

L(s, ψi,K/K
Hi)ai

=
∏
i

L(s, φi)
ai (Hecke character)

which gives a meromorphic continuation.
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Artin L-function and Artin Map (4/4)

Artin Map

Let K be a number field, CK := A×K/K×, the idèle class group of K. There is a
homomorphism, called the Artin map,

θK : CK → Gal(Kab/K)

such that

(i) For every finite abelian extension L/K, let θL/K denote the composition of

θL/K : CK
θK−−→ Gal(Kab/K)→ Gal(L/K)

Then ker θL/K = NL/K(CL), which yields an isomorphism

CK/(NL/KCL) = A×K/(K
× ·NL/K(A×L )) ·Gal(L/K)

(ii) Given any open subgroup of N of CK of finite index, there is a finite abelian
extension L of K with N = ker θL/K .
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Relation to Langlands Program

Artin’s Conjecture

Let ρ : Gal(K̄/K)→ GLn(C) be an irreducible non-trivial Galois representation.
Then L(s, ρ) is entire.

Remarks

If ρ is trivial, then L(s, ρ) = ζK(s), the Dedekind L-function, with pole at s = 1.
If ρ is 1-dimensional, then ρ = χ corresponds to a non-trivial Hecke character,
which is known to be entire.

Langlands-Tunnell Theorem

Suppose ρ : Gal(L/K)→ GL2(C) is an irreducible 2-dimensional representation.
If the image of ρ is solvable (a solvable subgroup of GL2(C)), then

L(s, ρ,K/k) = L(s, π)

where π is an automoporhic representation of GL2(AK).

The above theorem was important in the proof of the Modularity Theorem!
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