Representations of the General Linear group of degree 2 over a Finite Field

Justin Scarfy

The University of British Columbia

September 13, 2011

Representations of $GL_2(\mathbb{F}_p)$

Introduction

Motivation

Although the title of this seminar "Representation Theory of $GL(2, \mathbb{Q}_p)$ " suggests that much we will be discussing here is the representations of GL(2), the 2-by-2 invertible matrices, over the p-adic field \mathbb{Q}_p , we take some time today to carefully examine the representation of GL(2) over finite fields first: We are able to later generalize (with modification) much of our theory to local fields and adele rings over a global field.

Introduction

Motivation

Although the title of this seminar "Representation Theory of $GL(2, \mathbb{Q}_p)$ " suggests that much we will be discussing here is the representations of GL(2), the 2-by-2 invertible matrices, over the p-adic field \mathbb{Q}_p , we take some time today to carefully examine the representation of GL(2) over finite fields first: We are able to later generalize (with modification) much of our theory to local fields and adele rings over a global field.

Lecture Plan

We begin by defining a few important subgroups of $GL(2, \mathbb{F}_q)$, classify $GL(2, \mathbb{F}_q)$ by their conjugacy classes, then investigate when their induced representations are irreducible, and finally compute the character table.

Introduction

Motivation

Although the title of this seminar "Representation Theory of $GL(2, \mathbb{Q}_p)$ " suggests that much we will be discussing here is the representations of GL(2), the 2-by-2 invertible matrices, over the p-adic field \mathbb{Q}_p , we take some time today to carefully examine the representation of GL(2) over finite fields first: We are able to later generalize (with modification) much of our theory to local fields and adele rings over a global field.

Lecture Plan

We begin by defining a few important subgroups of $GL(2, \mathbb{F}_q)$, classify $GL(2, \mathbb{F}_q)$ by their conjugacy classes, then investigate when their induced representations are irreducible, and finally compute the character table.

Conventions in This Talk

All representations here will be assumed finite-dimensional over the complex numbers. G will always assumed of finite order.

Justin Scarfy (UBC)

Representations of $GL_2(\mathbb{F}_p)$

Important Algebraic Subgroups of $G_{\mathbb{F}} = \operatorname{GL}(2, \mathbb{F})$

The standard Borel subgroup B of $G_{\mathbb{F}}$, and the unipotetnt radical N of B:

$$N:=\left\{ \left(\begin{array}{cc} 1 & b \\ 0 & 1 \end{array} \right) \in G_{\mathbb{F}} \right\} \subset B:=\left\{ \left(\begin{array}{cc} a & b \\ 0 & c \end{array} \right) \in G_{\mathbb{F}} \right\}$$

Important Algebraic Subgroups of $G_{\mathbb{F}} = \operatorname{GL}(2, \mathbb{F})$

The standard Borel subgroup B of $G_{\mathbb{F}}$, and the unipotetnt radical N of B:

$$N:=\left\{ \left(\begin{array}{cc} 1 & b \\ 0 & 1 \end{array} \right) \in G_{\mathbb{F}} \right\} \subset B:=\left\{ \left(\begin{array}{cc} a & b \\ 0 & c \end{array} \right) \in G_{\mathbb{F}} \right\}$$

The group T with the semi-product decomposition $B=T\ltimes N,$ the centre Z of $G_{\mathbb{F}}$:

$$Z := \left\{ \left(\begin{array}{cc} a & 0 \\ 0 & a \end{array} \right) \in G_{\mathbb{F}} \right\} \subset T := \left\{ \left(\begin{array}{cc} a & 0 \\ 0 & b \end{array} \right) \in G_{\mathbb{F}} \right\}$$

Important Algebraic Subgroups of $G_{\mathbb{F}} = \operatorname{GL}(2, \mathbb{F})$

The standard Borel subgroup B of $G_{\mathbb{F}}$, and the unipotetnt radical N of B:

$$N:=\left\{ \left(\begin{array}{cc} 1 & b \\ 0 & 1 \end{array} \right) \in G_{\mathbb{F}} \right\} \subset B:=\left\{ \left(\begin{array}{cc} a & b \\ 0 & c \end{array} \right) \in G_{\mathbb{F}} \right\}$$

The group T with the semi-product decomposition $B=T\ltimes N$, the centre Z of $G_{\mathbb{F}}$:

$$Z := \left\{ \left(\begin{array}{cc} a & 0 \\ 0 & a \end{array} \right) \in G_{\mathbb{F}} \right\} \subset T := \left\{ \left(\begin{array}{cc} a & 0 \\ 0 & b \end{array} \right) \in G_{\mathbb{F}} \right\}$$

Stardand Bruhat Becomposition of $G_{\mathbb{F}} = \operatorname{GL}(2, \mathbb{F})$

We notice the fact that $G_{\mathbb{F}} = B \cup Bw_0B$, where w_0 denotes the permutation matrix $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$

Important Algebraic Subgroups of $G_{\mathbb{F}} = \operatorname{GL}(2, \mathbb{F})$

The standard Borel subgroup B of $G_{\mathbb{F}}$, and the unipotetnt radical N of B:

$$N:=\left\{ \left(\begin{array}{cc} 1 & b \\ 0 & 1 \end{array} \right) \in G_{\mathbb{F}} \right\} \subset B:=\left\{ \left(\begin{array}{cc} a & b \\ 0 & c \end{array} \right) \in G_{\mathbb{F}} \right\}$$

The group T with the semi-product decomposition $B=T\ltimes N$, the centre Z of $G_{\mathbb{F}}$:

$$Z := \left\{ \left(\begin{array}{cc} a & 0 \\ 0 & a \end{array} \right) \in G_{\mathbb{F}} \right\} \subset T := \left\{ \left(\begin{array}{cc} a & 0 \\ 0 & b \end{array} \right) \in G_{\mathbb{F}} \right\}$$

Stardand Bruhat Becomposition of $G_{\mathbb{F}} = \operatorname{GL}(2, \mathbb{F})$

We notice the fact that $G_{\mathbb{F}} = B \cup Bw_0B$, where w_0 denotes the permutation matrix $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ i.e. $\{1, w_0\}$ is a set of representatives of coset space $B \setminus G/B$.

Representations of $GL_2(\mathbb{F}_p)$

Conjugacy Classes of $G_{\mathbb{F}} = \operatorname{GL}(2, \mathbb{F})$

Let $g \in G_{\mathbb{F}}$ and set $f(t) = \det(tI - g)$, the characteristic polynomial of g. Three different cases arise depending on the roots of f(t):

Conjugacy Classes of $G_{\mathbb{F}} = \operatorname{GL}(2, \mathbb{F})$

Let $g \in G_{\mathbb{F}}$ and set $f(t) = \det(tI - g)$, the characteristic polynomial of g. Three different cases arise depending on the roots of f(t):

(1) f(t) is irreducible over \mathbb{F} , and if $f(t) = t^2 + at + b$, then g is G-conjugate to:

$$\left(\begin{array}{cc} 0 & -b \\ 1 & -a \end{array}\right)$$

Conjugacy Classes of $G_{\mathbb{F}} = \operatorname{GL}(2, \mathbb{F})$

Let $g \in G_{\mathbb{F}}$ and set $f(t) = \det(tI - g)$, the characteristic polynomial of g. Three different cases arise depending on the roots of f(t):

(1) f(t) is irreducible over \mathbb{F} , and if $f(t) = t^2 + at + b$, then g is G-conjugate to:

$$\left(\begin{array}{cc} 0 & -b \\ 1 & -a \end{array}\right)$$

(2) f(t) has distinct roots $a, b \in \mathbb{F}^{\times}$, then g is G-conjugate to:

$$\left(\begin{array}{cc} a & 0 \\ 0 & b \end{array}\right)$$

Conjugacy Classes of $G_{\mathbb{F}} = \operatorname{GL}(2, \mathbb{F})$

Let $g \in G_{\mathbb{F}}$ and set $f(t) = \det(tI - g)$, the characteristic polynomial of g. Three different cases arise depending on the roots of f(t):

(1) f(t) is irreducible over \mathbb{F} , and if $f(t) = t^2 + at + b$, then g is G-conjugate to:

 $\left(\begin{array}{cc} 0 & -b \\ 1 & -a \end{array}\right)$

(2) f(t) has distinct roots $a, b \in \mathbb{F}^{\times}$, then g is G-conjugate to:

 $\left(\begin{array}{cc} a & 0 \\ 0 & b \end{array}\right)$

(3) f(t) has repeated roots $a \in \mathbb{F}^{\times}$, then g is conjugate to exactly one of:

$$\left(egin{array}{cc} a & 0 \\ 0 & a \end{array}
ight), \quad \left(egin{array}{cc} a & 1 \\ 0 & a \end{array}
ight)$$

The Order and Conjugacy Classes of G

 $\bullet~{\rm The~group}~G~{\rm has~order}~(q^2-1)(q^2-q)$

- $\bullet~{\rm The~group}~G$ has order $(q^2-1)(q^2-q)$
- The group G has exactly q² − 1 conjugacy classes: since F_q has exactly (q² − q)/2 irreducible, monic polynomials of degree 2. Case (1) in the previous slide gives (q² − q)/2 [conjugacy] classes, Case (2) gives (q − 1)(q − 2)/2, and Case (3) gives 2(q − 1).

The Order and Conjugacy Classes of G

- $\bullet~{\rm The~group}~G$ has order $(q^2-1)(q^2-q)$
- The group G has exactly $q^2 1$ conjugacy classes: since \mathbb{F}_q has exactly $(q^2 q)/2$ irreducible, monic polynomials of degree 2. Case (1) in the previous slide gives $(q^2 - q)/2$ [conjugacy] classes, Case (2) gives (q - 1)(q - 2)/2, and Case (3) gives 2(q - 1).

Representative No. of Elements in Class No. of Classes

- $\bullet~{\rm The~group}~G$ has order $(q^2-1)(q^2-q)$
- The group G has exactly $q^2 1$ conjugacy classes: since \mathbb{F}_q has exactly $(q^2 q)/2$ irreducible, monic polynomials of degree 2. Case (1) in the previous slide gives $(q^2 - q)/2$ [conjugacy] classes, Case (2) gives (q - 1)(q - 2)/2, and Case (3) gives 2(q - 1).

Representative	No. of Elements in Class	No. of Classes
$a_x = \left(\begin{array}{cc} x & 0\\ 0 & x \end{array}\right)$	1	q-1

- $\bullet~{\rm The~group}~G$ has order $(q^2-1)(q^2-q)$
- The group G has exactly $q^2 1$ conjugacy classes: since \mathbb{F}_q has exactly $(q^2 q)/2$ irreducible, monic polynomials of degree 2. Case (1) in the previous slide gives $(q^2 - q)/2$ [conjugacy] classes, Case (2) gives (q - 1)(q - 2)/2, and Case (3) gives 2(q - 1).

Representative	No. of Elements in Class	No. of Classes
$a_x = \left(\begin{array}{cc} x & 0\\ 0 & x \end{array}\right)$	1	q-1
$b_x = \left(\begin{array}{cc} x & 1\\ 0 & x \end{array}\right)$	$q^2 - 1$	q-1

- $\bullet~{\rm The~group}~G$ has order $(q^2-1)(q^2-q)$
- The group G has exactly $q^2 1$ conjugacy classes: since \mathbb{F}_q has exactly $(q^2 q)/2$ irreducible, monic polynomials of degree 2. Case (1) in the previous slide gives $(q^2 - q)/2$ [conjugacy] classes, Case (2) gives (q - 1)(q - 2)/2, and Case (3) gives 2(q - 1).

Representative	No. of Elements in Class	No. of Classes
$a_x = \left(\begin{array}{cc} x & 0\\ 0 & x \end{array}\right)$	1	q-1
$b_x = \left(\begin{array}{cc} x & 1\\ 0 & x \end{array}\right)$	$q^2 - 1$	q-1
$c_{x,y} = \left(\begin{array}{cc} x & 0\\ 0 & y \end{array}\right)$	$q^2 + q$	$\frac{(q-1)(q-2)}{2}$

- $\bullet~{\rm The~group}~G$ has order $(q^2-1)(q^2-q)$
- The group G has exactly $q^2 1$ conjugacy classes: since \mathbb{F}_q has exactly $(q^2 q)/2$ irreducible, monic polynomials of degree 2. Case (1) in the previous slide gives $(q^2 - q)/2$ [conjugacy] classes, Case (2) gives (q - 1)(q - 2)/2, and Case (3) gives 2(q - 1).

Representative	No. of Elements in Class	No. of Classes
$a_x = \left(\begin{array}{cc} x & 0\\ 0 & x \end{array}\right)$	1	q-1
$b_x = \left(\begin{array}{cc} x & 1\\ 0 & x \end{array}\right)^{*}$	$q^2 - 1$	q-1
$c_{x,y} = \left(\begin{array}{cc} x & 0\\ 0 & y \end{array}\right)$	$q^2 + q$	$\frac{(q-1)(q-2)}{2}$
$d_{x,y} = \left(\begin{array}{cc} x & \varepsilon y \\ y & x \end{array}\right)$	$q^2 - q$	$\frac{q(q-1)}{2}$

Definitions

Definitions

• A representation (π, V) of a group G on a finite-dimensional complex vector space V is a homomorphism $\pi: G \to \operatorname{GL}(V)$, where $\operatorname{GL}(V)$ is the invertible complex linear maps from V to itself.

Definitions

- A representation (π, V) of a group G on a finite-dimensional complex vector space V is a homomorphism $\pi: G \to \operatorname{GL}(V)$, where $\operatorname{GL}(V)$ is the invertible complex linear maps from V to itself.
- A vector subspace $U \subseteq V$ is said to be *G*-invariant if all operators $\pi(g)$ take *U* to itself, and a representation (π, V) is said to be irreducible if it possesses NO *G*-invariant subspaces other than $\{0\}$ and *V* itself.

Definitions

- A representation (π, V) of a group G on a finite-dimensional complex vector space V is a homomorphism $\pi: G \to \operatorname{GL}(V)$, where $\operatorname{GL}(V)$ is the invertible complex linear maps from V to itself.
- A vector subspace $U \subseteq V$ is said to be *G*-invariant if all operators $\pi(g)$ take *U* to itself, and a representation (π, V) is said to be irreducible if it possesses NO *G*-invariant subspaces other than $\{0\}$ and *V* itself.
- The character is χ_{π} is the function $\chi_{\pi}(g) = \operatorname{tr} \pi(g)$, $g \in G$.

Definitions

- A representation (π, V) of a group G on a finite-dimensional complex vector space V is a homomorphism $\pi: G \to \operatorname{GL}(V)$, where $\operatorname{GL}(V)$ is the invertible complex linear maps from V to itself.
- A vector subspace $U \subseteq V$ is said to be *G*-invariant if all operators $\pi(g)$ take *U* to itself, and a representation (π, V) is said to be irreducible if it possesses NO *G*-invariant subspaces other than $\{0\}$ and *V* itself.
- The character is χ_{π} is the function $\chi_{\pi}(g) = \operatorname{tr} \pi(g)$, $g \in G$.

Facts (from Prerequisites)

Definitions

- A representation (π, V) of a group G on a finite-dimensional complex vector space V is a homomorphism $\pi: G \to \operatorname{GL}(V)$, where $\operatorname{GL}(V)$ is the invertible complex linear maps from V to itself.
- A vector subspace $U \subseteq V$ is said to be *G*-invariant if all operators $\pi(g)$ take *U* to itself, and a representation (π, V) is said to be irreducible if it possesses NO *G*-invariant subspaces other than $\{0\}$ and *V* itself.
- The character is χ_{π} is the function $\chi_{\pi}(g) = \operatorname{tr} \pi(g)$, $g \in G$.

Facts (from Prerequisites)

• Representations with the same character are isomorphic.

Definitions

- A representation (π, V) of a group G on a finite-dimensional complex vector space V is a homomorphism $\pi: G \to \operatorname{GL}(V)$, where $\operatorname{GL}(V)$ is the invertible complex linear maps from V to itself.
- A vector subspace $U \subseteq V$ is said to be *G*-invariant if all operators $\pi(g)$ take *U* to itself, and a representation (π, V) is said to be irreducible if it possesses NO *G*-invariant subspaces other than $\{0\}$ and *V* itself.
- The character is χ_{π} is the function $\chi_{\pi}(g) = \operatorname{tr} \pi(g)$, $g \in G$.

Facts (from Prerequisites)

- Representations with the same character are isomorphic.
- The number of irreducible representations of G coincides with the number of its conjugacy classes. $\implies G = \operatorname{GL}_2(\mathbb{F}_q)$ ought to have exactly $q^2 1$ irreducible representations.

Definitions (Restriction v.s. Induced Representations)

Let $H \subset G$ be a subgroup, any representation V of G restricts to a representation of H, is called a restricted representation, denoted by $\operatorname{Res}_{H}^{G}(V)$ or simply $\operatorname{Res}(V)$

Definitions (Restriction v.s. Induced Representations)

Let $H \subset G$ be a subgroup, any representation V of G restricts to a representation of H, is called a restricted representation, denoted by $\operatorname{Res}_{H}^{G}(V)$ or simply $\operatorname{Res}(V)$

Now suppose V is a representation of $G, W \subset V$ a subspace that is H-invariant. For any $g \in G$, the subspace $g \cdot W = \{g \cdot w | w \in W\}$ depends only on the left coset gH of g modulo $H, gh \cdot W = g \cdot (h \cdot W) = g \cdot W$; for a coset σ in G/H, we write $\sigma \cdot W$ for this subspace of V.

Definitions (Restriction v.s. Induced Representations)

Let $H \subset G$ be a subgroup, any representation V of G restricts to a representation of H, is called a restricted representation, denoted by $\operatorname{Res}_{H}^{G}(V)$ or simply $\operatorname{Res}(V)$

Now suppose V is a representation of $G, W \subset V$ a subspace that is H-invariant. For any $g \in G$, the subspace $g \cdot W = \{g \cdot w | w \in W\}$ depends only on the left coset gH of g modulo $H, gh \cdot W = g \cdot (h \cdot W) = g \cdot W$; for a coset σ in G/H, we write $\sigma \cdot W$ for this subspace of V. We say that V is induced by W if every element in V can be written UNIQUELY as a sum of elements in such translates of W,

i.e.
$$V = \bigoplus_{\sigma \in G/H} \sigma \cdot W$$

In this case we write $V = Ind_H^G(W)$ or simply Ind(W)

Definitions (Restriction v.s. Induced Representations)

Let $H \subset G$ be a subgroup, any representation V of G restricts to a representation of H, is called a restricted representation, denoted by $\operatorname{Res}_{H}^{G}(V)$ or simply $\operatorname{Res}(V)$

Now suppose V is a representation of $G, W \subset V$ a subspace that is H-invariant. For any $g \in G$, the subspace $g \cdot W = \{g \cdot w | w \in W\}$ depends only on the left coset gH of g modulo $H, gh \cdot W = g \cdot (h \cdot W) = g \cdot W$; for a coset σ in G/H, we write $\sigma \cdot W$ for this subspace of V. We say that V is induced by W if every element in V can be written UNIQUELY as a sum of elements in such translates of W,

i.e.
$$V = \bigoplus_{\sigma \in G/H} \sigma \cdot W$$

In this case we write $V = Ind_H^G(W)$ or simply Ind(W)

 $\mathrm{Ind}_{H}^{G}(W):=\{f:G\rightarrow W|f(hg)=\sigma(h)f(g) \text{ for all } h\in H,g\in G\}$

Frobenious Reciprocity Law

 ${\rm Res}$ and ${\rm Ind}$ are adjoint functors between the category of G-modules and the category of H-modules:

 $\operatorname{Hom}_{H}(W, \operatorname{Res}(V)) = \operatorname{Hom}_{G}(\operatorname{Ind}(W), V),$

or, equivalently

 $V \otimes \operatorname{Ind}(W) = \operatorname{Ind}(\operatorname{Res}(V) \otimes W).$

Frobenious Reciprocity Law

 ${\rm Res}$ and ${\rm Ind}$ are adjoint functors between the category of G-modules and the category of H-modules:

 $\operatorname{Hom}_{H}(W, \operatorname{Res}(V)) = \operatorname{Hom}_{G}(\operatorname{Ind}(W), V),$

or, equivalently

 $V \otimes \operatorname{Ind}(W) = \operatorname{Ind}(\operatorname{Res}(V) \otimes W).$

Theorem from Mackey Theory

Let G be a finite group, H its subgroup. If σ is a representation of H and π an irreducible representation of G whose restriction contains σ , then the restriction of π to H is the direct sum over $H \setminus G$ of the conjugates σ^g , each with the same multiplicity.

Forbenius Formula for Characters

Let V be a finite-dimensional representation of a finite group G, and let W be a representation of a subgroup $H \subset G$. Then the characters of V and W satisfy the inner product relation

$$\langle \chi_{\mathrm{Ind}(W)}, \chi_V \rangle = \langle \chi_W, \chi_{\mathrm{Res}(V)} \rangle$$

Forbenius Formula for Characters

Let V be a finite-dimensional representation of a finite group G, and let W be a representation of a subgroup $H \subset G$. Then the characters of V and W satisfy the inner product relation

$$\langle \chi_{\mathrm{Ind}(W)}, \chi_V \rangle = \langle \chi_W, \chi_{\mathrm{Res}(V)} \rangle$$

Straight Forward Construction of Irreducible Characters (1/2)

First consider the permutation representation of G on $\mathbb{P}^1(\mathbb{F}_q)$, which has dimension q + 1, it contains the trivial representations; let V be the complementary q-dimensional representation.

Forbenius Formula for Characters

Let V be a finite-dimensional representation of a finite group G, and let W be a representation of a subgroup $H \subset G$. Then the characters of V and W satisfy the inner product relation

$$\langle \chi_{\mathrm{Ind}(W)}, \chi_V \rangle = \langle \chi_W, \chi_{\mathrm{Res}(V)} \rangle$$

Straight Forward Construction of Irreducible Characters (1/2)

First consider the permutation representation of G on $\mathbb{P}^1(\mathbb{F}_q)$, which has dimension q + 1, it contains the trivial representations; let V be the complementary q-dimensional representation.

The values of the character χ of V on the four types of conjugacy classes are:

$$\chi(a_x) = q, \ \chi(b_x) = 0, \ \chi(c_{x,y}) = 1, \ \chi(d_{x,y}) = -1$$

Forbenius Formula for Characters

Let V be a finite-dimensional representation of a finite group G, and let W be a representation of a subgroup $H \subset G$. Then the characters of V and W satisfy the inner product relation

$$\langle \chi_{\mathrm{Ind}(W)}, \chi_V \rangle = \langle \chi_W, \chi_{\mathrm{Res}(V)} \rangle$$

Straight Forward Construction of Irreducible Characters (1/2)

First consider the permutation representation of G on $\mathbb{P}^1(\mathbb{F}_q)$, which has dimension q + 1, it contains the trivial representations; let V be the complementary q-dimensional representation.

The values of the character χ of V on the four types of conjugacy classes are:

$$\chi(a_x) = q, \ \chi(b_x) = 0, \ \chi(c_{x,y}) = 1, \ \chi(d_{x,y}) = -1$$

Since $\langle \chi, \chi \rangle = 1$, V is irreducible (another fact from prerequisite)

Straight Forward Construction of Irreducible Characters (2/2)

For each of the q-1 characters $\alpha : \mathbb{F}^{\times} \to \mathbb{C}^{\times}$, we have a one-dimensional representation U_{α} of G defined by $U_{\alpha}(g) := \alpha(\det(g))$.

Straight Forward Construction of Irreducible Characters (2/2)

For each of the q-1 characters $\alpha : \mathbb{F}^{\times} \to \mathbb{C}^{\times}$, we have a one-dimensional representation U_{α} of G defined by $U_{\alpha}(g) := \alpha(\det(g))$.

We also have the representations $V_{\alpha} := V \otimes U_{\alpha}$.

Straight Forward Construction of Irreducible Characters (2/2)

For each of the q-1 characters $\alpha : \mathbb{F}^{\times} \to \mathbb{C}^{\times}$, we have a one-dimensional representation U_{α} of G defined by $U_{\alpha}(g) := \alpha(\det(g))$.

We also have the representations $V_{\alpha} := V \otimes U_{\alpha}$.

The characters of U_{α} and V_{α} are given in the following table:

$$\begin{array}{ccccc} a_x & b_x & c_{x,y} & d_{x,y} \\ U_{\alpha} : & \alpha(x^2) & \alpha(x^2) & \alpha(xy) & \alpha(\zeta^q) \\ V_{\alpha} : & q\alpha(x^2) & 0 & \alpha(xy) & -\alpha(\zeta^q) \end{array}$$

Straight Forward Construction of Irreducible Characters (2/2)

For each of the q-1 characters $\alpha : \mathbb{F}^{\times} \to \mathbb{C}^{\times}$, we have a one-dimensional representation U_{α} of G defined by $U_{\alpha}(g) := \alpha(\det(g))$.

We also have the representations $V_{\alpha} := V \otimes U_{\alpha}$.

The characters of U_{α} and V_{α} are given in the following table:

$$\begin{array}{ccccc} a_x & b_x & c_{x,y} & d_{x,y} \\ U_{\alpha}: & \alpha(x^2) & \alpha(x^2) & \alpha(xy) & \alpha(\zeta^q) \\ V_{\alpha}: & q\alpha(x^2) & 0 & \alpha(xy) & -\alpha(\zeta^q) \end{array}$$

Remark

The total number of irreducible representations contributed by U_α and V_α is 2q, with q irreducible representations of each.

Justin Scarfy (UBC)

Representations of $GL_2(\mathbb{F}_p)$

Constructions of Irreducible Representations of B

Let χ_1, χ_2 be characters of \mathbb{F}_q^{\times} , then we form the character χ of T:

$$\chi = \chi_1 \otimes \chi_2 : \left(\begin{array}{cc} a & 0\\ 0 & b \end{array}\right) \mapsto \chi_1(a)\chi_2(b)$$

We regard this as a character of B, trivial on N, via the quotient $B \to B/N \cong T$

Constructions of Irreducible Representations of B

Let χ_1, χ_2 be characters of \mathbb{F}_q^{\times} , then we form the character χ of T:

$$\chi = \chi_1 \otimes \chi_2 : \left(\begin{array}{cc} a & 0\\ 0 & b \end{array}\right) \mapsto \chi_1(a)\chi_2(b)$$

We regard this as a character of B, trivial on N, via the quotient $B \to B/N \cong T$ Hence we form the induced representation $\operatorname{Ind}_B^G(\chi)$ of G, and by

considering its irreducible component, we come at Proposition 1:

Constructions of Irreducible Representations of B

Let χ_1, χ_2 be characters of \mathbb{F}_q^{\times} , then we form the character χ of T:

$$\chi = \chi_1 \otimes \chi_2 : \left(\begin{array}{cc} a & 0\\ 0 & b \end{array}\right) \mapsto \chi_1(a)\chi_2(b)$$

We regard this as a character of B, trivial on N, via the quotient $B \rightarrow B/N \cong T$ Hence we form the induced representation $\operatorname{Ind}_B^G(\chi)$ of G, and by considering its irreducible component, we come at Proposition 1:

Proposition 1

Let π be an irreducible representation of G, then TFAE:

Constructions of Irreducible Representations of B

Let χ_1, χ_2 be characters of \mathbb{F}_q^{\times} , then we form the character χ of T:

$$\chi = \chi_1 \otimes \chi_2 : \left(\begin{array}{cc} a & 0\\ 0 & b \end{array}\right) \mapsto \chi_1(a)\chi_2(b)$$

We regard this as a character of B, trivial on N, via the quotient $B \rightarrow B/N \cong T$ Hence we form the induced representation $\operatorname{Ind}_B^G(\chi)$ of G, and by considering its irreducible component, we come at Proposition 1:

Proposition 1

Let π be an irreducible representation of G, then TFAE: 1) π is equivalent to a G-subspace of $\operatorname{Ind}_B^G \chi$, for some character χ of T

Constructions of Irreducible Representations of B

Let χ_1, χ_2 be characters of \mathbb{F}_q^{\times} , then we form the character χ of T:

$$\chi = \chi_1 \otimes \chi_2 : \left(\begin{array}{cc} a & 0\\ 0 & b \end{array}\right) \mapsto \chi_1(a)\chi_2(b)$$

We regard this as a character of B, trivial on N, via the quotient $B \rightarrow B/N \cong T$ Hence we form the induced representation $\operatorname{Ind}_B^G(\chi)$ of G, and by considering its irreducible component, we come at Proposition 1:

Proposition 1

Let π be an irreducible representation of G, then TFAE: 1) π is equivalent to a G-subspace of $\operatorname{Ind}_B^G \chi$, for some character χ of T2) π is contains the trivial character of N.

Representations of $GL_2(\mathbb{F}_p)$

Outline of Proof to Proposition 1

The representations π contains the trivial character of N if and only if it contains an irreducible representation π of B containing the trivial character of N.

Outline of Proof to Proposition 1

The representations π contains the trivial character of N if and only if it contains an irreducible representation π of B containing the trivial character of N.

This condition is equivalent of saying π to a character from T to B.

The proposition then follows from Frobenius Reciprocity Law

Outline of Proof to Proposition 1

The representations π contains the trivial character of N if and only if it contains an irreducible representation π of B containing the trivial character of N.

This condition is equivalent of saying π to a character from T to B.

The proposition then follows from Frobenius Reciprocity Law

How to approach $\operatorname{Ind}_B^G \chi$

We have to analyze the induced representation $\operatorname{Ind}_B^G \chi$; to do so, we form the character χ^w , of T: (χ^w is called the Weil conjugate of χ)

$$\chi^w : \left(\begin{array}{cc} a & 0\\ 0 & b \end{array}\right) \mapsto \chi_2(a)\chi_1(b)$$

Outline of Proof to Proposition 1

The representations π contains the trivial character of N if and only if it contains an irreducible representation π of B containing the trivial character of N.

This condition is equivalent of saying π to a character from T to B.

The proposition then follows from Frobenius Reciprocity Law

How to approach $\operatorname{Ind}_B^G \chi$

We have to analyze the induced representation $\operatorname{Ind}_B^G \chi$; to do so, we form the character χ^w , of T: (χ^w is called the Weil conjugate of χ)

$$\chi^w : \left(\begin{array}{cc} a & 0\\ 0 & b \end{array}\right) \mapsto \chi_2(a)\chi_1(b)$$

We abuse notation here and view this as a character of B trivial on N.

Proposition 2

Let $\chi,\,\xi$ be characters of T, viewed as characters of B which are trivial on N;

Proposition 2

Let $\chi\text{, }\xi$ be characters of T, viewed as characters of B which are trivial on N:

1) The space $\operatorname{Hom}_G(\operatorname{Ind}_B^G(\chi), \operatorname{Ind}_B^G(\xi))$ is trivial unless $\chi = \xi$ or $\chi = \xi^w$

Proposition 2

Let $\chi\text{, }\xi$ be characters of T, viewed as characters of B which are trivial on N:

1) The space $\operatorname{Hom}_G(\operatorname{Ind}_B^G(\chi), \operatorname{Ind}_B^G(\xi))$ is trivial unless $\chi = \xi$ or $\chi = \xi^w$ 2) The spaces

 $\operatorname{Hom}_{G}(\operatorname{Ind}_{B}^{G}(\chi), \operatorname{Ind}_{B}^{G}(\chi)) \quad \text{and} \quad \operatorname{Hom}_{G}(\operatorname{Ind}_{B}^{G}(\chi), \operatorname{Ind}_{B}^{G}(\chi^{w}))$

have the same dimension: This dimension is 2 if $\chi=\chi^w$, and otherwise 1

Proposition 2

Let $\chi\text{, }\xi$ be characters of T, viewed as characters of B which are trivial on N:

1) The space $\operatorname{Hom}_G(\operatorname{Ind}_B^G(\chi), \operatorname{Ind}_B^G(\xi))$ is trivial unless $\chi = \xi$ or $\chi = \xi^w$ 2) The spaces

 $\operatorname{Hom}_{G}(\operatorname{Ind}_{B}^{G}(\chi),\operatorname{Ind}_{B}^{G}(\chi)) \quad \text{and} \quad \operatorname{Hom}_{G}(\operatorname{Ind}_{B}^{G}(\chi),\operatorname{Ind}_{B}^{G}(\chi^{w}))$

have the same dimension: This dimension is 2 if $\chi=\chi^w$, and otherwise 1

Corollaries

Let χ be a character of T, viewed as a character of B which is trivial on N;

• The representation $\mathrm{Ind}_B^G\chi$ is IRREDUCIBLE if and only if $\chi \neq \chi^w$

Proposition 2

Let $\chi\text{, }\xi$ be characters of T, viewed as characters of B which are trivial on N:

1) The space $\operatorname{Hom}_G(\operatorname{Ind}_B^G(\chi), \operatorname{Ind}_B^G(\xi))$ is trivial unless $\chi = \xi$ or $\chi = \xi^w$ 2) The spaces

 $\operatorname{Hom}_{G}(\operatorname{Ind}_{B}^{G}(\chi),\operatorname{Ind}_{B}^{G}(\chi)) \quad \text{and} \quad \operatorname{Hom}_{G}(\operatorname{Ind}_{B}^{G}(\chi),\operatorname{Ind}_{B}^{G}(\chi^{w}))$

have the same dimension: This dimension is 2 if $\chi=\chi^w$, and otherwise 1

Corollaries

Let χ be a character of T, viewed as a character of B which is trivial on N;

- The representation $\mathrm{Ind}_B^G \chi$ is IRREDUCIBLE if and only if $\chi \neq \chi^w$
- If $\chi = \chi^w$, the representation $\operatorname{Ind}_H^G \chi$ has length 2, with distinct decomposition factors.

Proof of Proposition 2 (1/2)

The canonical isomorphism of Frobenius Reciprocity gives:

```
\operatorname{Hom}_{G}(\operatorname{Ind}_{B}^{G}(\chi), \operatorname{Ind}_{B}^{G}(\xi)) \cong \operatorname{Hom}_{B}(\operatorname{Res}_{B}^{G}(\operatorname{Ind}_{B}^{G}(\chi)), \xi) (1)
```

Irreducibility of $\text{Ind}_B^G \chi$ (2/3)

Proof of Proposition 2 (1/2)

The canonical isomorphism of Frobenius Reciprocity gives:

 $\operatorname{Hom}_{G}(\operatorname{Ind}_{B}^{G}(\chi), \operatorname{Ind}_{B}^{G}(\xi)) \cong \operatorname{Hom}_{B}(\operatorname{Res}_{B}^{G}(\operatorname{Ind}_{B}^{G}(\chi)), \xi)$ (1)

Then by the restriction-induction formula of Mackey we obtain:

 $\mathrm{Res}^G_B(\mathrm{Ind}^G_B(\chi))$

Irreducibility of $\text{Ind}_B^G \chi$ (2/3)

Proof of Proposition 2 (1/2)

The canonical isomorphism of Frobenius Reciprocity gives:

$$\operatorname{Hom}_{G}(\operatorname{Ind}_{B}^{G}(\chi), \operatorname{Ind}_{B}^{G}(\xi)) \cong \operatorname{Hom}_{B}(\operatorname{Res}_{B}^{G}(\operatorname{Ind}_{B}^{G}(\chi)), \xi)$$
(1)

Then by the restriction-induction formula of Mackey we obtain:

$$\operatorname{Res}_{B}^{G}(\operatorname{Ind}_{B}^{G}(\chi)) \cong \bigoplus_{y \in B \setminus G/B} \operatorname{Ind}_{B \cap B^{y}}^{B}(\operatorname{Res}_{B \cap B^{y}}^{B^{y}}(\chi^{w}))$$
(2)

where $\chi^y(b) := \chi(yby^{-1})$ for any $b \in B^y = y^{-1}By$.

Irreducibility of $\text{Ind}_B^G \chi$ (2/3)

Proof of Proposition 2 (1/2)

The canonical isomorphism of Frobenius Reciprocity gives:

$$\operatorname{Hom}_{G}(\operatorname{Ind}_{B}^{G}(\chi), \operatorname{Ind}_{B}^{G}(\xi)) \cong \operatorname{Hom}_{B}(\operatorname{Res}_{B}^{G}(\operatorname{Ind}_{B}^{G}(\chi)), \xi)$$
(1)

Then by the restriction-induction formula of Mackey we obtain:

$$\operatorname{Res}_{B}^{G}(\operatorname{Ind}_{B}^{G}(\chi)) \cong \bigoplus_{y \in B \setminus G/B} \operatorname{Ind}_{B \cap B^{y}}^{B}(\operatorname{Res}_{B \cap B^{y}}^{B^{y}}(\chi^{w}))$$
(2)

where $\chi^y(b):=\chi(yby^{-1})$ for any $b\in B^y=y^{-1}By.$

By Bruchat decomposition, we only have to consider y = 1 and $y = w_0$:

- The term in (2) corresponding to y = 1 is just χ , and hence contributes a factor $\operatorname{Hom}_T(\chi,\xi)$ to (1)
- The term corresponding to w_0 contributes $\operatorname{Hom}_B(\operatorname{Ind}_T^B(\chi^w),\xi) \cong \operatorname{Hom}_T(\chi^w,\xi)$

Proof of Proposition 2 (2/2)

Altogether, (1) decomposes to:

```
\operatorname{Hom}_B(\operatorname{Ind}_B^G(\chi), \operatorname{Ind}_B^G(\xi)) \cong \operatorname{Hom}_T(\chi, \xi) \oplus \operatorname{Hom}_T(\chi^w, \xi)
```

Irreducibility of $\text{Ind}_B^G \chi$ (3/3)

Proof of Proposition 2 (2/2)

Altogether, (1) decomposes to:

```
\operatorname{Hom}_B(\operatorname{Ind}_B^G(\chi), \operatorname{Ind}_B^G(\xi)) \cong \operatorname{Hom}_T(\chi, \xi) \oplus \operatorname{Hom}_T(\chi^w, \xi)
```

Remark

The representation $\operatorname{Ind}_B^G \chi$ has dimension [G:B] = q + 1, with characters:

$$\begin{array}{cccc} a_x & b_x & c_{x,y} & d_{x,y} \\ W_{\alpha,\beta} & (q+1)\alpha(x)\beta(x) & \alpha(x)\beta(x) & \alpha(x)\beta(y) + \alpha(y)\beta(x) & 0 \end{array}$$

Proof of Proposition 2 (2/2)

Altogether, (1) decomposes to:

```
\operatorname{Hom}_B(\operatorname{Ind}_B^G(\chi), \operatorname{Ind}_B^G(\xi)) \cong \operatorname{Hom}_T(\chi, \xi) \oplus \operatorname{Hom}_T(\chi^w, \xi)
```

Remark

The representation $\operatorname{Ind}_B^G \chi$ has dimension [G:B] = q + 1, with characters:

$$egin{array}{ccc} a_x & b_x & c_{x,y} & d_{x,y} \ W_{lpha,eta} & (q+1)lpha(x)eta(x) & lpha(x)eta(x) & lpha(x)eta(x) & lpha(y)eta(x) & 0 \end{array}$$

The above implies $W_{\alpha,\beta} \cong W_{\beta,\alpha}$, and $W_{\alpha,\alpha} \cong U_{\alpha} \oplus V_{\alpha}$.

Proof of Proposition 2 (2/2)

Altogether, (1) decomposes to:

```
\operatorname{Hom}_B(\operatorname{Ind}_B^G(\chi), \operatorname{Ind}_B^G(\xi)) \cong \operatorname{Hom}_T(\chi, \xi) \oplus \operatorname{Hom}_T(\chi^w, \xi)
```

Remark

The representation $\operatorname{Ind}_B^G \chi$ has dimension [G:B] = q + 1, with characters:

$$egin{array}{ccc} a_x & b_x & c_{x,y} & d_{x,y} \ W_{lpha,eta} & (q+1)lpha(x)eta(x) & lpha(x)eta(x) & lpha(x)eta(y) & lpha(y)eta(x) & 0 \end{array}$$

The above implies $W_{\alpha,\beta} \cong W_{\beta,\alpha}$, and $W_{\alpha,\alpha} \cong U_{\alpha} \oplus V_{\alpha}$. Hence we just proved $W_{\alpha,\beta}$ is irreducible if $\alpha \neq \beta$, this gives $\frac{1}{2}(q-1)(q-2)$ more representations.

Character Table for $G = \operatorname{GL}_2(\mathbb{F}_q)$ so farG1 $q^2 - 1$ $q^2 + q$ $q^2 - q$ $a_x = \begin{pmatrix} x & 0 \\ 0 & x \end{pmatrix}$ $b_x = \begin{pmatrix} x & 1 \\ 0 & x \end{pmatrix}$ $c_{x,y} = \begin{pmatrix} x & 0 \\ 0 & y \end{pmatrix}$ $d_{x,y} = \begin{pmatrix} x & \varepsilon y \\ y & x \end{pmatrix} = \zeta$

Character Table for $G = \operatorname{GL}_2(\mathbb{F}_q)$ so far

	1	$q^2 - 1$	$q^2 + q$	$q^2 - q$
G	$a_x = \left(\begin{smallmatrix} x & 0 \\ 0 & x \end{smallmatrix}\right)$	$b_x = \left(\begin{smallmatrix} x & 1 \\ 0 & x \end{smallmatrix}\right)$	$c_{x,y} = \left(\begin{smallmatrix} x & 0 \\ 0 & y \end{smallmatrix}\right)$	$d_{x,y} = \left(\begin{smallmatrix} x & \varepsilon y \\ y & x \end{smallmatrix}\right) = \zeta$
U_{α}	$lpha(x^2)$	$lpha(x^2)$	lpha(xy)	$lpha(\zeta^q)$
V_{α}	$q \alpha(x^2)$	0	lpha(xy)	$-lpha(\zeta^q)$

Character Table for $G = \operatorname{GL}_2(\mathbb{F}_q)$ so far

	1	$q^2 - 1$	$q^2 + q$	$q^2 - q$
G	$a_x = \left(\begin{smallmatrix} x & 0 \\ 0 & x \end{smallmatrix}\right)$	$b_x = \left(\begin{smallmatrix} x & 1 \\ 0 & x \end{smallmatrix}\right)$	$c_{x,y} = \left(\begin{smallmatrix} x & 0 \\ 0 & y \end{smallmatrix}\right)$	$d_{x,y} = \left(\begin{smallmatrix} x & \varepsilon y \\ y & x \end{smallmatrix}\right) = \zeta$
U_{α}	$lpha(x^2)$	$\alpha(x^2)$	lpha(xy)	$lpha(\zeta^q)$
V_{α}	$qlpha(x^2)$	0	lpha(xy)	$-\alpha(\zeta^q)$
$W_{\alpha,\beta}$	$(q+1)\alpha(x)\beta(x)$	$\alpha(x)\beta(x)$	$\alpha(x)\beta(y) + \alpha(y)\beta(x)$	0

Character Table for $G = GL_2(\mathbb{F}_q)$ so far

	1	$q^2 - 1$	$q^2 + q$	$q^2 - q$
G	$a_x = \left(\begin{smallmatrix} x & 0 \\ 0 & x \end{smallmatrix}\right)$	$b_x = \left(\begin{smallmatrix} x & 1 \\ 0 & x \end{smallmatrix}\right)$	$c_{x,y} = \left(\begin{smallmatrix} x & 0 \\ 0 & y \end{smallmatrix}\right)$	$d_{x,y} = \begin{pmatrix} x & \varepsilon y \\ y & x \end{pmatrix} = \zeta$
U_{α}	$lpha(x^2)$	$\alpha(x^2)$	lpha(xy)	$lpha(\zeta^q)$
V_{α}	$qlpha(x^2)$	0	lpha(xy)	$-lpha(\zeta^q)$
$W_{\alpha,\beta}$	$(q+1)\alpha(x)\beta(x)$	lpha(x)eta(x)	$\alpha(x)\beta(y) + \alpha(y)\beta(x)$	0

Comparing with the list of conjugacy classes, we see that $\frac{1}{2}q(q-1)$ representations are missing. Natural ways to find new characters by inducing characters from the cyclic subgroup of G FAIL to give irreducible characters (to be checked privately at home).

Character Table for $G = GL_2(\mathbb{F}_q)$ so far

	1	$q^2 - 1$	$q^2 + q$	q^2-q
G	$a_x = \left(\begin{smallmatrix} x & 0 \\ 0 & x \end{smallmatrix}\right)$	$b_x = \left(\begin{smallmatrix} x & 1 \\ 0 & x \end{smallmatrix}\right)$	$c_{x,y} = \left(\begin{smallmatrix} x & 0 \\ 0 & y \end{smallmatrix}\right)$	$d_{x,y} = \left(\begin{smallmatrix} x & \varepsilon y \\ y & x \end{smallmatrix}\right) = \zeta$
U_{α}	$lpha(x^2)$	$\alpha(x^2)$	lpha(xy)	$lpha(\zeta^q)$
V_{α}	$qlpha(x^2)$	0	lpha(xy)	$-lpha(\zeta^q)$
$W_{\alpha,\beta}$	$(q+1)\alpha(x)\beta(x)$	$\alpha(x)\beta(x)$	$\alpha(x)\beta(y) + \alpha(y)\beta(x)$	0
X_{ϕ}	?	?	?	?

Comparing with the list of conjugacy classes, we see that $\frac{1}{2}q(q-1)$ representations are missing. Natural ways to find new characters by inducing characters from the cyclic subgroup of G FAIL to give irreducible characters (to be checked privately at home). Solution to this problem: Weil Representations (Next Week)

Representations of $\operatorname{GL}_2(\mathbb{F}_p)$