The Weil Representations for the General Linear group of degree 2 over a Finite Field

Justin Scarfy

The University of British Columbia

September 20, 2011

Introduction

Motivation

Recall last week we attempted (in vain) to compute the character table of their irreducible representations of $\operatorname{GL}_2(\mathbb{F}_q)$, but a large portion of irreducible representations are missing, with our technology at the time. Today we shall "recover" the missing representations by a method André Weil developed in his celebrated paper "Sur certains groupes d'opèrateurs unitaires" dated 1964.

Introduction

Motivation

Recall last week we attempted (in vain) to compute the character table of their irreducible representations of $\operatorname{GL}_2(\mathbb{F}_q)$, but a large portion of irreducible representations are missing, with our technology at the time. Today we shall "recover" the missing representations by a method André Weil developed in his celebrated paper "Sur certains groupes d'opèrateurs unitaires" dated 1964.

Lecture Plan

We first carefully scrutinize the quadratic extension of \mathbb{F}_q , then show they correspond to the generators of the group $\mathrm{SL}_2(\mathbb{F}_q)$, which representations can be extended to those of $\mathrm{GL}_2(\mathbb{F}_q)$

Introduction

Motivation

Recall last week we attempted (in vain) to compute the character table of their irreducible representations of $\operatorname{GL}_2(\mathbb{F}_q)$, but a large portion of irreducible representations are missing, with our technology at the time. Today we shall "recover" the missing representations by a method André Weil developed in his celebrated paper "Sur certains groupes d'opèrateurs unitaires" dated 1964.

Lecture Plan

We first carefully scrutinize the quadratic extension of \mathbb{F}_q , then show they correspond to the generators of the group $\mathrm{SL}_2(\mathbb{F}_q)$, which representations can be extended to those of $\mathrm{GL}_2(\mathbb{F}_q)$

Reminder

Remember there were q(q-1) representations missing to be found!

Where We Left Off

Conjugacy Classes of $\operatorname{GL}_2(\mathbb{F}_q)$						
Representative	No. of Elements in Class	No. of Classes				
$a_x = \left(\begin{smallmatrix} x & 0 \\ 0 & x \end{smallmatrix}\right)$	1	q-1				
$b_x = \left(\begin{smallmatrix} x & 1 \\ 0 & x \end{smallmatrix}\right)$	$q^2 - 1$	q-1				
$c_{x,y} = \left(\begin{smallmatrix} x & 0 \\ 0 & y \end{smallmatrix}\right)$	$q^2 + q$	$\frac{(q-1)(q-2)}{2}$				
$d_{x,y} = \left(\begin{smallmatrix} x & \varepsilon y \\ y & x \end{smallmatrix}\right)$	$q^2 - q$	$\frac{q(q-1)}{2}$				

Where We Left Off

Conjugacy Classes of $\operatorname{GL}_2(\mathbb{F}_q)$								
	Representative	No. of Eler	ments in Class	No. of Classes				
	$a_x = \left(\begin{smallmatrix} x & 0\\ 0 & x \end{smallmatrix}\right)$	1		q-1				
	$b_x = \left(egin{smallmatrix} x & 1 \ 0 & x \end{smallmatrix} ight)$	$q^2 - 1$		q-1				
	$c_{x,y} = \left(\begin{smallmatrix} x & 0 \\ 0 & y \end{smallmatrix}\right)$	$q^2 + q$		$\frac{(q-1)(q-2)}{2}$				
	$d_{x,y} = \left(\begin{smallmatrix} x & \varepsilon y \\ y & x \end{smallmatrix}\right)$	$q^2 - q$		$\frac{q(q-1)}{2}$				
	I	Charac	ter Table					
	1	$q^2 - 1$	$q^2 + q$	$q^2 - q$				
G	$a_x = \left(\begin{smallmatrix} x & 0 \\ 0 & x \end{smallmatrix}\right)$	$b_x = \left(\begin{smallmatrix} x & 1 \\ 0 & x \end{smallmatrix}\right)$	$c_{x,y} = \left(\begin{smallmatrix} x & 0 \\ 0 & y \end{smallmatrix}\right)$	$d_{x,y} = \left(\begin{smallmatrix} x & \varepsilon y \\ y & x \end{smallmatrix}\right) = \zeta$				
U_{α}	$lpha(x^2)$	$\alpha(x^2)$	lpha(xy)	$lpha(\zeta^q)$				
V_{lpha}	$q\alpha(x^2)$	0	lpha(xy)	$-lpha(\zeta^q)$				
$W_{\alpha,\beta}$	$(q+1)\alpha(x)\beta(x)$	$\alpha(x)\beta(x)$	$\alpha(x)\beta(y) + \alpha(y)$	$\beta(x)$ 0				
X_{ϕ}	?	?	?	?				

Quadratic Extensions of \mathbb{F}_q (1/2)

Observations

Notice the conjugacy class with representative $d_{x,y} \in \operatorname{GL}_2(\mathbb{F}_q) = G$, with ε non-square in \mathbb{F}_q , gives an interesting isomorphism

$$K := \left\{ \left(\begin{array}{cc} x & \varepsilon y \\ y & x \end{array} \right) \right\} \cong \mathbb{F}_{q^2}^{\times}, \quad \left(\begin{array}{cc} x & \varepsilon y \\ y & x \end{array} \right) \leftrightarrow \zeta = x + y \sqrt{\varepsilon}$$

K is a cyclic subgroup of G of order $q^2 - 1$

Quadratic Extensions of \mathbb{F}_q (1/2)

Observations

Notice the conjugacy class with representative $d_{x,y} \in \operatorname{GL}_2(\mathbb{F}_q) = G$, with ε non-square in \mathbb{F}_q , gives an interesting isomorphism

$$K := \left\{ \left(\begin{array}{cc} x & \varepsilon y \\ y & x \end{array} \right) \right\} \cong \mathbb{F}_{q^2}^{\times}, \quad \left(\begin{array}{cc} x & \varepsilon y \\ y & x \end{array} \right) \leftrightarrow \zeta = x + y \sqrt{\varepsilon}$$

K is a cyclic subgroup of G of order q^2-1

Failed Irreducible Representations (1/2)

A natural way to find new characters of G is to *induce* characters from K: For a representation $\phi: K \to \mathbb{C}^{\times}$ the character values of induced (from K to G, denoted $\operatorname{Ind}(\phi)$) representation are: $a_x \mapsto q(q-1)\phi(x) \quad b_x \mapsto 0 \quad c_{x,y} \mapsto 0 \quad d_{x,y} \mapsto \phi(\zeta) + \phi(\zeta)^q$

Quadratic Extensions of \mathbb{F}_q (1/2)

Observations

Notice the conjugacy class with representative $d_{x,y} \in \operatorname{GL}_2(\mathbb{F}_q) = G$, with ε non-square in \mathbb{F}_q , gives an interesting isomorphism

$$K := \left\{ \left(\begin{array}{cc} x & \varepsilon y \\ y & x \end{array} \right) \right\} \cong \mathbb{F}_{q^2}^{\times}, \quad \left(\begin{array}{cc} x & \varepsilon y \\ y & x \end{array} \right) \leftrightarrow \zeta = x + y \sqrt{\varepsilon}$$

K is a cyclic subgroup of G of order q^2-1

Failed Irreducible Representations (1/2)

A natural way to find new characters of G is to *induce* characters from K: For a representation $\phi: K \to \mathbb{C}^{\times}$ the character values of induced (from K to G, denoted $\operatorname{Ind}(\phi)$) representation are: $a_x \mapsto q(q-1)\phi(x) \quad b_x \mapsto 0 \quad c_{x,y} \mapsto 0 \quad d_{x,y} \mapsto \phi(\zeta) + \phi(\zeta)^q$ Note that $\operatorname{Ind}(\phi) \cong \operatorname{Ind}(\phi^q)$, so it gives $\frac{1}{2}q(q-1)$ different representations when $\phi \neq \phi^q$ (characters with this property are called regular).

Quadratic Extensions of \mathbb{F}_q (2/2)

Failed Irreducible Representations (2/2)

However, these representations are NOT irreducible in the following sense: the character χ of $\mathrm{Ind}(\phi)$ satisfies

$$(\chi,\chi) = egin{cases} q-1 & ext{if } \phi ext{ is regular} \ q & ext{otherwise} \end{cases}$$

Quadratic Extensions of \mathbb{F}_q (2/2)

Failed Irreducible Representations (2/2)

However, these representations are NOT irreducible in the following sense: the character χ of $\mathrm{Ind}(\phi)$ satisfies

$$(\chi,\chi) = egin{cases} q-1 & ext{if } \phi ext{ is regular} \ q & ext{otherwise} \end{cases}$$

Remark

A irreducible representation of G NOT containing the trivial character of N is called the *cuspidal*. Such representations σ contain all non-trivial characters of N.

Quadratic Extensions of \mathbb{F}_q (2/2)

Failed Irreducible Representations (2/2)

However, these representations are NOT irreducible in the following sense: the character χ of $\mathrm{Ind}(\phi)$ satisfies

$$(\chi,\chi) = egin{cases} q-1 & ext{if } \phi ext{ is regular} \ q & ext{otherwise} \end{cases}$$

Remark

A irreducible representation of G NOT containing the trivial character of N is called the *cuspidal*. Such representations σ contain all non-trivial characters of N.

Thus the above failed example tells us that cuspidal representations cannot be constructed directly from induction.

\mathbb{F}_{q^2} and $\mathrm{SL}_2(\mathbb{F}_q)$

Generators for $SL_2(\mathbb{F}_q)$

Let S be the group generated by t(y), n(z), and w_1 , with $y \in \mathbb{F}_q^{\times}$, $z \in \mathbb{F}_q$, where functions t and n satisfy:

$$t(y_1)t(y_2) = t(y_1y_2);$$
 $n(z_1)n(z_2) = n(z_1 + z_2);$ (1)

$$t(y)n(z)t(y)^{-1} = n(y^2z);$$
 $wt(y)w = t(-y^{-1});$ (2)

$$wn(z)w = t(-z^{-1})n(-z)wn(-z^{-1}), \quad (z \neq 0)$$
 (3)

\mathbb{F}_{q^2} and $\mathrm{SL}_2(\mathbb{F}_q)$

Generators for $SL_2(\mathbb{F}_q)$

Let S be the group generated by t(y), n(z), and w_1 , with $y \in \mathbb{F}_q^{\times}$, $z \in \mathbb{F}_q$, where functions t and n satisfy:

$$t(y_1)t(y_2) = t(y_1y_2);$$
 $n(z_1)n(z_2) = n(z_1 + z_2);$ (1)

$$(y)n(z)t(y)^{-1} = n(y^2z);$$
 $wt(y)w = t(-y^{-1});$ (2)

$$wn(z)w = t(-z^{-1})n(-z)wn(-z^{-1}), \quad (z \neq 0)$$
 (3)

Then S is isomorphic to $SL_2(\mathbb{F}_q)$: in this isomorphism

$$t(y)\mapsto \left(\begin{array}{cc}y&0\\0&y^{-1}\end{array}\right),\ n(z)\mapsto \left(\begin{array}{cc}1&z\\0&1\end{array}\right),\ w\mapsto \left(\begin{array}{cc}0&1\\-1&0\end{array}\right).$$

\mathbb{F}_{q^2} and $\mathrm{SL}_2(\mathbb{F}_q)$

Generators for $SL_2(\mathbb{F}_q)$

Let S be the group generated by t(y), n(z), and w_1 , with $y \in \mathbb{F}_q^{\times}$, $z \in \mathbb{F}_q$, where functions t and n satisfy:

$$t(y_1)t(y_2) = t(y_1y_2);$$
 $n(z_1)n(z_2) = n(z_1 + z_2);$ (1)

$$f(y)n(z)t(y)^{-1} = n(y^2 z);$$
 $wt(y)w = t(-y^{-1});$ (2)

$$wn(z)w = t(-z^{-1})n(-z)wn(-z^{-1}), \quad (z \neq 0)$$
 (3)

Then S is isomorphic to $SL_2(\mathbb{F}_q)$: in this isomorphism

$$t(y) \mapsto \left(\begin{array}{cc} y & 0\\ 0 & y^{-1} \end{array}\right), \ n(z) \mapsto \left(\begin{array}{cc} 1 & z\\ 0 & 1 \end{array}\right), \ w \mapsto \left(\begin{array}{cc} 0 & 1\\ -1 & 0 \end{array}\right).$$

$$\psi: \operatorname{SL}_2(\mathbb{F}_q) \to S \text{ by } \psi \left(\begin{array}{cc} a & b \\ c & d \end{array}\right) = \begin{cases} n(a/c)t(-c^{-1})wn(d/c) & \text{if } c \neq 0 \\ t(a)n(b/a) & \text{if } c = 0 \end{cases}$$

Let E be a two-dimensional commutative semi-simple algebra over \mathbb{F}_q , then precisely two non-isomorphic possibility for E:

- split case: $E = \mathbb{F}_q \oplus \mathbb{F}_q$ with F embedded diagonally
- ullet anisotropic case: E is the unique quadratic field extension of \mathbb{F}_q

Let E be a two-dimensional commutative semi-simple algebra over \mathbb{F}_q , then precisely two non-isomorphic possibility for E:

- split case: $E = \mathbb{F}_q \oplus \mathbb{F}_q$ with F embedded diagonally
- anisotropic case: E is the unique quadratic field extension of \mathbb{F}_q

Let $x \to \bar{x}$ be the automorphism $(\xi, \eta) \to (\eta, \xi)$ of E if E splits, or let $x \to \bar{x}$ be the nontrivial Galois automorphism of E/\mathbb{F}_q if E is anisotropic.

Let E be a two-dimensional commutative semi-simple algebra over \mathbb{F}_q , then precisely two non-isomorphic possibility for E:

- split case: $E = \mathbb{F}_q \oplus \mathbb{F}_q$ with F embedded diagonally
- anisotropic case: E is the unique quadratic field extension of \mathbb{F}_q

Let $x \to \bar{x}$ be the automorphism $(\xi, \eta) \to (\eta, \xi)$ of E if E splits, or let $x \to \bar{x}$ be the nontrivial Galois automorphism of E/\mathbb{F}_q if E is anisotropic. Define tr, Norm : $E \to \mathbb{F}_q$ be the trace and Norm maps $(\operatorname{tr}(x) := x + \bar{x}, \operatorname{Norm}(x) := x\bar{x})$ If Φ is a function on E we define the Fourier transform $\hat{\Phi}$ by

$$\hat{\Phi}(x) := \epsilon \frac{1}{q} \sum_{y \in E} \Phi(y) \psi(\operatorname{tr}(\bar{x}y)), \quad \epsilon := \begin{cases} 1 & \text{in the split case,} \\ -1 & \text{in the anisotropic case} \end{cases}$$

Let E be a two-dimensional commutative semi-simple algebra over \mathbb{F}_q , then precisely two non-isomorphic possibility for E:

- split case: $E = \mathbb{F}_q \oplus \mathbb{F}_q$ with F embedded diagonally
- anisotropic case: E is the unique quadratic field extension of \mathbb{F}_q

Let $x \to \bar{x}$ be the automorphism $(\xi, \eta) \to (\eta, \xi)$ of E if E splits, or let $x \to \bar{x}$ be the nontrivial Galois automorphism of E/\mathbb{F}_q if E is anisotropic. Define tr, Norm : $E \to \mathbb{F}_q$ be the trace and Norm maps $(\operatorname{tr}(x) := x + \bar{x}, \operatorname{Norm}(x) := x\bar{x})$ If Φ is a function on E we define the Fourier transform $\hat{\Phi}$ by

$$\hat{\Phi}(x) := \epsilon \frac{1}{q} \sum_{y \in E} \Phi(y) \psi(\operatorname{tr}(\bar{x}y)), \quad \epsilon := \begin{cases} 1 & \text{in the split case,} \\ -1 & \text{in the anisotropic case} \end{cases}$$

Let W be the q^2 -dimensional space of all complex-valued functions on E

There exists a representation $\omega : \operatorname{SL}_2(\mathbb{F}_q) \to \operatorname{End}(W)$ such that

$$\begin{pmatrix} \omega \begin{pmatrix} a & 0 \\ 0 & a^{-1} \end{pmatrix} \Phi \end{pmatrix} (x) = \Phi(yx),$$
$$\begin{pmatrix} \omega \begin{pmatrix} 1 & z \\ 0 & 1 \end{pmatrix} \Phi \end{pmatrix} (x) = \psi(z \operatorname{Norm}(x)) \Phi(x),$$
$$\begin{pmatrix} \omega \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \Phi \end{pmatrix} (x) = \hat{\Phi}(x).$$

There exists a representation $\omega : \operatorname{SL}_2(\mathbb{F}_q) \to \operatorname{End}(W)$ such that

$$\begin{pmatrix} \omega \begin{pmatrix} a & 0 \\ 0 & a^{-1} \end{pmatrix} \Phi \end{pmatrix} (x) = \Phi(yx),$$
$$\begin{pmatrix} \omega \begin{pmatrix} 1 & z \\ 0 & 1 \end{pmatrix} \Phi \end{pmatrix} (x) = \psi(z \operatorname{Norm}(x)) \Phi(x),$$
$$\begin{pmatrix} \omega \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \Phi \end{pmatrix} (x) = \hat{\Phi}(x).$$

Remark

If y=1, then the second formula in (2) is the Fourier inversion formula $\hat{\hat{\Phi}}(x)=\Phi(-x).$

There exists a representation $\omega : \operatorname{SL}_2(\mathbb{F}_q) \to \operatorname{End}(W)$ such that

$$\begin{pmatrix} \omega \begin{pmatrix} a & 0 \\ 0 & a^{-1} \end{pmatrix} \Phi \end{pmatrix} (x) = \Phi(yx),$$
$$\begin{pmatrix} \omega \begin{pmatrix} 1 & z \\ 0 & 1 \end{pmatrix} \Phi \end{pmatrix} (x) = \psi(z \operatorname{Norm}(x)) \Phi(x),$$
$$\begin{pmatrix} \omega \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \Phi \end{pmatrix} (x) = \hat{\Phi}(x).$$

Remark

If y=1, then the second formula in (2) is the Fourier inversion formula $\hat{\Phi}(x)=\Phi(-x).$

We need to verify the consistency relations corresponding to (1)-(3) above. We outline how (3) can be obtained:

Justin Scarfy (UBC)

Weil Representations of $GL_2(\mathbb{F}_q)$

Need to show:
$$\omega \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \omega \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix} \omega \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$
$$= \omega \begin{pmatrix} -a^{-1} & 0 \\ 0 & -a \end{pmatrix} \omega \begin{pmatrix} 1 & -a \\ 0 & 1 \end{pmatrix} \omega \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \omega \begin{pmatrix} 1 & -a^{-1} \\ 0 & 1 \end{pmatrix}$$

Need to show:
$$\omega \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \omega \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix} \omega \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$
$$= \omega \begin{pmatrix} -a^{-1} & 0 \\ 0 & -a \end{pmatrix} \omega \begin{pmatrix} 1 & -a \\ 0 & 1 \end{pmatrix} \omega \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \omega \begin{pmatrix} 1 & -a^{-1} \\ 0 & 1 \end{pmatrix}$$

With $a \in \mathbb{F}_q^{\times}$ and $b \in E$ we can deduce:

$$\sum_{y \in E} \psi(a\operatorname{Norm}(y) + \operatorname{tr}(\bar{b}y)) = \epsilon q \psi(-a^{-1}\operatorname{Norm}(b))$$

Need to show:
$$\omega \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \omega \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix} \omega \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

= $\omega \begin{pmatrix} -a^{-1} & 0 \\ 0 & -a \end{pmatrix} \omega \begin{pmatrix} 1 & -a \\ 0 & 1 \end{pmatrix} \omega \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \omega \begin{pmatrix} 1 & -a^{-1} \\ 0 & 1 \end{pmatrix}$

With $a \in \mathbb{F}_q^{\times}$ and $b \in E$ we can deduce:

$$\sum_{y \in E} \psi(a\operatorname{Norm}(y) + \operatorname{tr}(\bar{b}y)) = \epsilon q \psi(-a^{-1}\operatorname{Norm}(b))$$

Unfolding $L := (L.H.S. \ \Phi)(x)$ and $R := (R.H.S. \ \Phi)(x)$ we see:

$$L = \frac{1}{q^2} \sum_{y,z \in E} \psi(a\operatorname{Norm}(y))\psi(\operatorname{tr}(\bar{z}y))\Phi(z)$$
$$R = \epsilon \frac{1}{q} \sum_{z \in E} \psi(-a^{-1}\operatorname{Norm}(x))\psi(-a^{-1}\operatorname{Norm}(z))\psi(\operatorname{tr}(x\bar{z})\Phi(z))$$

Justin Scarfy (UBC)

Need to show:
$$\omega \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \omega \begin{pmatrix} 1 & a \\ 0 & 1 \end{pmatrix} \omega \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$$

= $\omega \begin{pmatrix} -a^{-1} & 0 \\ 0 & -a \end{pmatrix} \omega \begin{pmatrix} 1 & -a \\ 0 & 1 \end{pmatrix} \omega \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \omega \begin{pmatrix} 1 & -a^{-1} \\ 0 & 1 \end{pmatrix}$

With $a \in \mathbb{F}_q^{\times}$ and $b \in E$ we can deduce:

$$\sum_{y \in E} \psi(a\operatorname{Norm}(y) + \operatorname{tr}(\bar{b}y)) = \epsilon q \psi(-a^{-1}\operatorname{Norm}(b))$$

Unfolding $L := (L.H.S. \Phi)(x)$ and $R := (R.H.S. \Phi)(x)$ we see:

$$L = \frac{1}{q^2} \sum_{y,z \in E} \psi(a\operatorname{Norm}(y))\psi(\operatorname{tr}(\bar{z}y))\Phi(z) =$$
$$R = \epsilon \frac{1}{q} \sum_{z \in E} \psi(-a^{-1}\operatorname{Norm}(x))\psi(-a^{-1}\operatorname{Norm}(z))\psi(\operatorname{tr}(x\bar{z})\Phi(z))$$

Extending Representations from $SL_2(\mathbb{F}_q)$ to $GL_2(\mathbb{F}_q)$ (1/2)

Representations of E^{\times}

Let χ be a character of E^{\times} . We will associate a representation $(\pi(\chi), W(\chi))$ of $\operatorname{GL}_2(\mathbb{F}_q)$ with χ . We assume that χ does NOT factor through Norm : $E^{\times} \to \mathbb{F}_q^{\times}$. Let E_1^{\times} be the subgroup of elements x with $\operatorname{Norm}(x) = 1$

Extending Representations from $SL_2(\mathbb{F}_q)$ to $GL_2(\mathbb{F}_q)$ (1/2)

Representations of E^{\times}

Let χ be a character of E^{\times} . We will associate a representation $(\pi(\chi), W(\chi))$ of $\operatorname{GL}_2(\mathbb{F}_q)$ with χ . We assume that χ does NOT factor through Norm : $E^{\times} \to \mathbb{F}_q^{\times}$. Let E_1^{\times} be the subgroup of elements x with $\operatorname{Norm}(x) = 1$

Let

$$\begin{split} W(\chi) &:= \{ \Phi \in W : \Phi(yx) = \chi(y)^{-1} \Phi(x) \text{ for } y \in E_1^{\times} \} \\ \dim(W(\chi)) &= \begin{cases} q-1 \text{ if } E \text{ splits} \\ q+1 \text{ if } E \text{ is anisotropic} \end{cases} \end{split}$$

Extending Representations from $SL_2(\mathbb{F}_q)$ to $GL_2(\mathbb{F}_q)$ (1/2)

Representations of E^{\times}

Let χ be a character of E^{\times} . We will associate a representation $(\pi(\chi), W(\chi))$ of $\operatorname{GL}_2(\mathbb{F}_q)$ with χ . We assume that χ does NOT factor through Norm : $E^{\times} \to \mathbb{F}_q^{\times}$. Let E_1^{\times} be the subgroup of elements x with $\operatorname{Norm}(x) = 1$

Let

$$\begin{split} W(\chi) &:= \{ \Phi \in W : \Phi(yx) = \chi(y)^{-1} \Phi(x) \text{ for } y \in E_1^{\times} \} \\ \dim(W(\chi)) &= \begin{cases} q-1 \text{ if } E \text{ splits} \\ q+1 \text{ if } E \text{ is anisotropic} \end{cases} \end{split}$$

Remark

Our assumption is equivalent to saying that $\chi | E_1^{\times}$ is nontrivial. Without the assumption we still could construct $\pi(\chi)$, but NOT irreducible.

Weil Representations of $GL_2(\mathbb{F}_q)$

Extending Representations from $SL_2(\mathbb{F}_q)$ to $GL_2(\mathbb{F}_q)$ (2/2)

Now extend the action of ${\rm SL}_2(\mathbb{F}_q)$ on $W(\chi)$ to a representation of ${\rm GL}_2(F_q)$ by letting

$$\left(\omega \left(\begin{array}{cc} a & 0 \\ 0 & 1 \end{array}\right) \Phi\right)(x) := \chi(b) \Phi(bx)$$

where $a \in \mathbb{F}_a^{\times}, b \in E^{\times}$ are chosen so that $\operatorname{Norm}(b) = a$.

Extending Representations from $SL_2(\mathbb{F}_q)$ to $GL_2(\mathbb{F}_q)$ (2/2)

Now extend the action of ${\rm SL}_2(\mathbb{F}_q)$ on $W(\chi)$ to a representation of ${\rm GL}_2(F_q)$ by letting

$$\left(\omega \left(\begin{array}{cc} a & 0 \\ 0 & 1 \end{array}\right) \Phi\right)(x) := \chi(b) \Phi(bx)$$

where $a \in \mathbb{F}_a^{\times}, b \in E^{\times}$ are chosen so that $\operatorname{Norm}(b) = a$.

Weil Representations are cuspidal

Finally we can show (NOT today) that the Weil Representations $(\pi(\chi), W(\chi))$ are cuspidal. (i.e. there exists NO nonzero linear functional l on $W(\chi)$ such that

$$l\left(\pi\left(\begin{array}{cc}1&a\\0&1\end{array}\right)v\right)=l(v),\quad\forall v\in V,x\in\mathbb{F}_q.)$$

Note we just need to check the case when E anisotropic.

The Completed Character Table

Weil Representations provide us the virtual characters:

$$\chi_{\phi} := \chi_{V \otimes W_{a,1}} - \chi_{W_{a,1}} - \chi_{\mathrm{Ind}(\phi)}$$

where $V, W_{a,b}$ were defined last time and recall $\phi : K \cong \mathbb{F}_{q^2} \to \mathbb{C}^{\times}$

The Completed Character Table

Weil Representations provide us the virtual characters:

 $\chi_{\phi} := \chi_{V \otimes W_{a,1}} - \chi_{W_{a,1}} - \chi_{\mathrm{Ind}(\phi)}$

where $V, W_{a,b}$ were defined last time and recall $\phi : K \cong \mathbb{F}_{q^2} \to \mathbb{C}^{\times}$

Character Table								
	1	$q^2 - 1$	$q^2 + q$	$q^2 - q$				
G	$a_x = \left(\begin{smallmatrix} x & 0 \\ 0 & x \end{smallmatrix}\right)$	$b_x = \left(\begin{smallmatrix} x & 1 \\ 0 & x \end{smallmatrix}\right)$	$c_{x,y} = \left(\begin{smallmatrix} x & 0\\ 0 & y \end{smallmatrix}\right)$	$d_{x,y} = \left(\begin{smallmatrix} x & \varepsilon y \\ y & x \end{smallmatrix}\right) = \zeta$				
U_{α}	$lpha(x^2)$	$\alpha(x^2)$	lpha(xy)	$lpha(\zeta^q)$				
V_{lpha}	$qlpha(x^2)$	0	lpha(xy)	$-lpha(\zeta^q)$				
$W_{\alpha,\beta}$	$(q+1)\alpha(x)\beta(x)$	$\alpha(x)\beta(x)$	$\alpha(x)\beta(y) + \alpha(y)\beta(x)$	0				
X_{ϕ}	$(q-1)\phi(x)$	$-\phi(x)$	0	$-(\phi(\zeta)+\phi(\zeta^q))$				