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Introduction and Plan

Why Hodge Theory?

Hodge theory was developed in the 1930’s as an extension of de Rham
theory, and it enjoys its applications on three levels:

Riemannian manifolds.

Kähler manifolds.

algebraic geometry of complex projective varieties.

Of course, due to the focus of this seminar being algebraic-arithmetic
oriented, we shall mainly exploit its applications in the last setting.

Plan and Warnings for this lecture

This lecture will try to drown you with definitions: we start with a quick
review of de Rham theory, unify certain aspects between Ćech
cohomology and singular cohomology, survey a few facts about Kähler
manifolds, define resolutions and hypercohomology, mention a few well
known cohomological realizations of complex projective varieties, and
define many different Hodge structures to play with in the upcoming
lectures.
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(Review of) de Rham Theory (1/3)

Let x1, . . . , xn be the standard coordinates in Rn, recall that the de Rham
complex of Rn, Ω∗, is defined to be the free R-algebra (with units)
generated by symbols dx1, . . . , dxn, with the relations{

(dxi)
2 = 0,

dxidxj = −dxjdxi.

Wake up question: what is the dimension of Ω∗?

Differential forms on Rn

Ω∗(Rn) = C∞(Rn)⊗R Ω∗

i.e., ω ∈ Ωn(Rn) iff

ω =
∑
I

fI dxI ,

with the multi-index notation I := (i1, . . . , ig), dxI := dxi1 · · · dxig .
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(Review of) de Rham Theory (2/3)
Recall that the De Rham differential (exterior derivatives) is defined by,

d : Ωq(Rn)→ Ωq+1(Rn),

such that

1 d is R-linear.
2 For f ∈ Ω0(Rn) = C∞(Rn), df is the one-form acts on a vector field

by df(X) := X(f).
3 For α ∈ Ωr(Rn), β ∈ Ωs(Rn), the Leibniz rule holds:

d(α ∧ β) = dα ∧ β + (−1)rα ∧ dβ.
4 d2 = d ◦ d = 0.

Example with q = 3, n = 3

Ω0(R3)
d - Ω1(R3)

d - Ω2(R3)
d - Ω3(R3)

{

functions

}

�www

grad

−−−→{

vector fields

}

�www

curl

−−−→{

vector fields

}

�www

div

−−→{

functions

}

�www
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(Review of) de Rham Theory (3/3)

de Rham (Dolbeault) cohomology

Let M ⊂ Rn be a smooth manifold, we define

Hq
dR(M ;R) :=

ker{d : Ωq(M)→ Ωq+1(M)}
im{d : Ωq−1(M)→ Ωq(M)}

=
{closed q-forms in M}
{exact q-forms in M}

.

though the above cohomology groups takes coefficients in R, we can
extend the scalars to C, by

Hq
dR(M,C) := Hq

dR(M,R)⊗ C.

de Rham Theorem

The theorem of de Rham (1931) asserts that for a smooth manifold
M ⊂ Rn,

Hq
dR(M,R) ∼= Hsing(M,R),

the singular cohomology of M with coefficients in R.
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Complex of Sheaves

Example 1 of a sheaf: Verify this yourself!

For a smooth manifold M , the set of differential p-forms Ωp
M form a

sheaf that assigns to each open set U of M the set Ωp
M (U) of smooth

p-forms on U .

Example 2 of a sheaf: This is somewhat trivial

RM , the locally constant sheaf on M that assigns to each open set U the
set RM (U) of locally constant function on U .

Complex of Sheaves

A complex of sheaves is a collection of sheaves Fi, i ∈ Z, together with
morphisms of sheaves di : Fi → Fi+1 such that di+1 ◦ di = 0.
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Resolutions

Let F ,G,H be three sheaves, and let φ : F → G, ψ : G → H be
morphisms of sheaves such that ψ ◦ φ = 0.

The complex F• is called a resolution of F if for every i ≥ 0, the sequence

F i φi−→ F i+1 φi+1−−−→ F i+2

is exact in the middle, and j is injective with j(F) = kerφ0.

Fine resolution

The complex F• is called a fine resolution of F if for every i ≥ 0, the
sequence

0→ F → F0 φ0−→ F1 φ1−→ F2 φ2−→ · · ·

is everywhere exact.
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Čech cohomology (1/3)

Let I be an totally ordered set, and define an abstract simplicial
complex ∆ on I be a collection of a finite subset of I, closed under
taking subsets. Each F ∈ ∆ is called a face of ∆. If U = {Ui}i∈I is a
locally finite cover of M , then we associate to U an abstract simplicial
complex N (U), called the nerve of U , and the faces of N (U) are the sets
with {Ui1 , . . . , Uik} with Ui1 ∩ · · · ∩ Uik 6= ∅.

Refinement

Let U and V be open covers of M , then V is a refinement of U if every
element in V is contained in U .

Čech Theorem

Let U be a locally finite open cover of M , and if all intersections of sets in
U (including U) are contractible, then N (U) is homotopically equivalent
to M .
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Čech cohomology (2/3)

Čech covers

A cover which satisfies the hypothesis in the above Theorem is called a
Čech cover, and all smooth manifolds admit Čech covers (fact).

Čech cochains

Let F be a sheaf on M , and U = {Ui} be a locally finite open cover of
M . A Čech k-cochain is a function α on the k-faces of N (U) such that
the value on the face Ui0 , . . . , Uik lies in F(Ui0 ∩ · · · ∩Uik), i.e., the group
of k-cochains is

Čk(U ,F) =
⊕

i0<···<ik (Ui0 ∩ · · ·Uik).

with the coboundary operator d sends k-cochains to (k + 1)-cochains:

d : α(Ui0 ∩ · · · ∩ Uik) 7→
k+1∑
j=0

(−1)jα(Ui0 ∩ · · · ∩ Ûij ∩ · · · ∩ Uik).
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the value on the face Ui0 , . . . , Uik lies in F(Ui0 ∩ · · · ∩Uik), i.e., the group
of k-cochains is

Čk(U ,F) =
⊕

i0<···<ik (Ui0 ∩ · · ·Uik).

with the coboundary operator d sends k-cochains to (k + 1)-cochains:

d : α(Ui0 ∩ · · · ∩ Uik) 7→
k+1∑
j=0

(−1)jα(Ui0 ∩ · · · ∩ Ûij ∩ · · · ∩ Uik).
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Čech cohomology (3/3)

Since the coboundary operator d satisfies d2 = 0, we obtain a chain
complex of chains F•(X) of chains, which we call the Čech complex of
F associated to U , and the Čech cohomology of F with respect to U is
defined to be:

Ȟk(U ,F) :=
ker d : Fk(M)→ Fk+1(M)

im d : Fk−1(M)→ Fk(M)

Čech cohomology group

Let F be a sheaf of M , the kth Čech cohomology group of F is

Ȟk(M,F) = lim−→
U
Ȟk(U ,F)

where the covers U are ordered by refinement.
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Proof of de Rham Theorem

It can be shown that Ȟk(M,RM ) and Hk
sing(M,R) are isomorphic, as

singular cochains can be approximated by Čech cochains for a very refined
cover U of M .

Let F be a sheaf on M and let

0→ F → F0 → F1 → · · ·

be a fine resolution of F . Suppose that U is an open cover of M such
that the sequence of homomorphisms

F j−1(Ui0 ∩ · · · ∩ Uik)→ F j(Ui0 ∩ · · · ∩ Uik)→ F j+1(Ui0 ∩ · · · ∩ Uik)

is exact for every face {Ui0 ∩ · · · ∩ Uik} of N (U), then

Ȟ(U ,F) ∼= Ȟ(M,F), and finally, Ȟ(M,RM ) ∼= Hk
dR(M).
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Kähler manifolds

A Kähler manifold is a manifold with three mutually compatible structures:
a complex structure, a Riemannian structure, and a symplectic structure.

Symplectic Structure

A symplectic structure on a 2d-dimensional manifold M is a closed
2-form ω ∈

∧2(M), the set of alternating 2-forms on M , such that
Ω = ωd/d! (the volume form), is nowhere vanishing.
Reality test: What about when ω ∈ Sym2(M)?

Hermitian metric

Let M ⊂ Cn be a complex manifold and J is complex structure (atlas),
and a Riemannian metric g on M is said to be a Hermitian metric if and
only if for every p ∈M , the bilinear form gp on the tangent space Tp(M),
is compatible with the complex structure Jp.
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Kähler manifolds

Kähler metric

A Hermitian metric on a manifold M is said to be a Kähler metric if and
only if the 2-form

ω(X,Y ) := g(JX, Y )

is closed. And a complex manifold to be a Kälher manifold if it admits to
a Kähler structure and refer to ω as a Kähler form.

Hodge decomposition theorem

Let M be a compact Kähler manifold and Hp,q(M) the space of de Rham
cohomology classes for Hp+q(M,C) that have a representation of bidegree
(p, q). Then

Hk(M,C) ∼=
⊕
p+q

Hp,q(M),

Hp,q = Hq,p.
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Hypercohomology (1/3)
Let A and B be two abelian categories, and let

F : A → B

be a functor.

A is said to have sufficiently many injective objects, if for every
object A of A, there exists a monomorphism A→ I with I injective,
and I ∈ A is injective if every short exact sequence

0→ I →M → N → 0

splits.

F is said to be left-exact, if for every short exact sequence
0→ A→ B → C → 0 of objects in A, the sequence

0→ F(A)→ F(B)→ F(C)

of objects in B is exact.
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Hypercohomology (2/3)
Let A and B be two abelian categories, where A has sufficiently many
injective objects and let

F : A → B

be left exact functor. For a left-bounded complex M• of A, we define the
ith derived object RiF(M•) as follows:

Let i• : M• → I• be a quasi-isomorphism, (i.e., a morphism such that
the induced morphisms

Hn(M•)→ Hn(I•)

is an isomorphism for all n), with ik injective for every k, where I• is an
injective left bounded complex of A.

Hypercohomology

Define the hypercohomology

Hi(F(I•)) := RiF(M•), the right derived functor ofF .

Justin Scarfy (UBC) Hodge-de Rham 1 2015-01-21 15 / 24



Hypercohomology (2/3)
Let A and B be two abelian categories, where A has sufficiently many
injective objects and let

F : A → B

be left exact functor. For a left-bounded complex M• of A, we define the
ith derived object RiF(M•) as follows:
Let i• : M• → I• be a quasi-isomorphism, (i.e., a morphism such that
the induced morphisms

Hn(M•)→ Hn(I•)

is an isomorphism for all n), with ik injective for every k, where I• is an
injective left bounded complex of A.

Hypercohomology

Define the hypercohomology

Hi(F(I•)) := RiF(M•), the right derived functor ofF .

Justin Scarfy (UBC) Hodge-de Rham 1 2015-01-21 15 / 24



Hypercohomology (2/3)
Let A and B be two abelian categories, where A has sufficiently many
injective objects and let

F : A → B

be left exact functor. For a left-bounded complex M• of A, we define the
ith derived object RiF(M•) as follows:
Let i• : M• → I• be a quasi-isomorphism, (i.e., a morphism such that
the induced morphisms

Hn(M•)→ Hn(I•)

is an isomorphism for all n), with ik injective for every k, where I• is an
injective left bounded complex of A.

Hypercohomology

Define the hypercohomology

Hi(F(I•)) := RiF(M•), the right derived functor ofF .

Justin Scarfy (UBC) Hodge-de Rham 1 2015-01-21 15 / 24



Hypercohomology (3/3)

Example: The hypercohomology of a complex of sheaves

The hypercohomology of a complex L• of sheaves of abelian groups on a
topological space X generalizes the cohomology of a single sheaf:

First form the double complex of global sections of the fine resolutions of
the sheaves Lq:

K :=
⊕
p,q

Kp,q =
⊕
p,q

Γ(X, CpLq).

The hypercohomology H(X,L•) is the total cohomology of the double
complex, i.e., the cohomology of the associated single complex

K• =
⊕

Kk =
⊕
k

⊕
p+q=k

Kp,q

with differential D := δ + (−1)pd, (δ and d the horizontal and vertical
differential of the complex K):

H(X,L•) := Hk
D(K•).
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Facts from Motives and Cohomological Realizations

Let k be a field with algebraic closure k̄ ⊆ C (so char(k) = 0). Consider
smooth projective varieties (so it a pure motive) X over k. There are
several ‘nice’ cohomology theory:

the Betti realization H∗B(X) = H∗sing(Xan
C ,Q), a Q-vector space),

the singular cohomology of the topological space Xan
C .

the de Rham realization

H∗dR(X) = H∗(X,Ω∗X/k),

(a k-vector space with a Hodge filtration), the algebraic de Rham
cohomology, i.e., the hypercohomology of the sheaf Ω∗X/k of algebraic
differential forms on X.

the `-adic realization H∗` (X) = H∗ét(Xk̄,Q`) (a Q`-vector space
with Gal(k̄/k)-action), the `-adic étale cohomology.
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Real Hodge Structures

(Real) Hodge Structure

A (real) Hodge structure (HS) of weight k ∈ Z is consists of

1 a finite dimensional real vector space V .

2 a decomposition of the complexification VC := V ⊗C R as

VC =
⊕
p+q=k

V p,q; V q,p = V p,q.

We say that the Hodge structure is rational (resp. integral) if there exists
a rational vector space VQ (rep. a lattice VZ) such that V = VQ ⊗Q R
(resp. V = VZ ⊗Z R).

alternate definition of HS via (induced) filtration (1/2)

A HS of weight k consists of a real vector space V and a decreasing
filtration

· · · ⊂ F p ⊂ F p−1 ⊂ · · ·
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Hodge Structures

alternate definition of HS via (induced) filtration (2/2)

of the complex vector space VC = V ⊗R C such that

VC = F p ⊕ F k−p+1.

Example: The Tate-Hodge structure (THS)

Z(1) is an HS of weight −2 defined by the finitely generated abelian group

HZ = 2πiZ ⊂ C, HC = H−1,−1,

is bigraded of type (−1,−1), of rank 1. The m-tensor product
Z(1)⊗ · · · ⊗ Z(1) is a HS of weight −2m denoted by Z(m):

HZ = (2πi)mZ ⊂ C, HC = H−m,−m.

Remark: 2πi is an example of a period, a number written as a integral
over a topical chain of an differential form (algebraic in some sense).
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Mixed Hodge Structure

Mixed Hodge Structure (MHS)

Let A = Z,Q, or R. An A-mixed Hodge structure H consists of

1 an A-module of finite type HA;

2 a finite increasing filtration W• of A⊗Q-vector space HA⊗Q called
the weight filtration:

· · · ⊆Wm−1HA⊗Q ⊆WmHA⊗Q ⊆Wm+1HA⊗Q ⊆ · · ·

3 a finite decreasing filtration F • of the C-vector space
HC = HA ⊗A C, called the Hodge filtration:

· · · ⊇ F p−1HC ⊇ F pHC ⊇ F p+1HC ⊇ · · ·

4 the systems satisfy WC := W ⊗ C, such that the systems
GrWn H := (GrWn (HA⊗Q), (GrWn (HA⊗Q)⊗ C,GrW

C
n HC, F ))

∼= (GrW
C

n HC, (GrW
C

n HC, F ))are A⊗Q-HS of weight n
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Mixed Tate Hodge structure

Example: Mixed Tate-Hodge structure (MTHS)

HQ is a MTHS if

GrWn HQ =

{
0, if n is odd,⊕

Q(−n
2 ), if n is even.

Hence the main difference between MHS and MTHS is that of the weight
filtration, i.e., the weight filtration of MTHS only is nontrivial only at even
integers:

· · · ⊆W2m−2HA⊗Q ⊆W2mHA⊗Q ⊆W2m+2HA⊗Q ⊆ · · ·

Remark

Though the definition of MTHS is not widely used, it is MTHS which have
connections with polylogrithms, which will appear in future lectures.
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Variations of Hodge Structure (VHS)

Variations of Hodge Structure (VHS)

Let B be a connected complex manifold. A variation of Hodge
structure of weight k (VHS) over B consists of

1 a local system VZ of free Z-modules;

2 a filtration of the associated holomorphic vector bundle V,

· · · ⊂ Fp ⊂ Fp−1 ⊂ · · ·

by holomorphic subbundles (Hodge bundles) Fp satisfying:

I V = Fp ⊕ Fk−p+1 as C∞ bundles, where the conjugation is taken
relative to the local system of real vector spaces VR := VZ ⊗ R,

I ∇(Fp) ⊂ Ω1
B ⊗Fp−1, where ∇ is the flat connection on V, and Fp

the sheaf of holomorphic sections of Fp.

Example of a variation of Hodge structure

Find your own!
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Variations of Mixed Hodge Structure (VMHS)

Variations of mixed Hodge structure (VMHS)

Let X be a complex manifold, a variation of mixed Hodge structure
(VMHS) on X consists of

1 a local system LZ of Z-modules of finite type;

2 a finite increasing filtration W of LQ := LZ ⊗Q by sublocal systems
of rational vector spaces;

3 a finite decreasing filtration F by locally free analytic subsheaves of
LOX

:= LZ ⊗OX , whose sections on X satisfy the infinitesimal
Griffths transversality relation with respect to the connection ∇
defined on LOX

by the local system LC := LZ ⊗ C,

∇(Fp) ⊂ Ω1
X ⊗OX

Fp−1;

4 the filtrations W and F define an MHS on each fiber
(LOX

(t),W(t),L(t)) of the bundle LOX
at a point t.

Justin Scarfy (UBC) Hodge-de Rham 1 2015-01-21 23 / 24



Variations of Mixed Hodge Structure (VMHS)

Variations of mixed Hodge structure (VMHS)

Let X be a complex manifold, a variation of mixed Hodge structure
(VMHS) on X consists of

1 a local system LZ of Z-modules of finite type;

2 a finite increasing filtration W of LQ := LZ ⊗Q by sublocal systems
of rational vector spaces;

3 a finite decreasing filtration F by locally free analytic subsheaves of
LOX

:= LZ ⊗OX , whose sections on X satisfy the infinitesimal
Griffths transversality relation with respect to the connection ∇
defined on LOX

by the local system LC := LZ ⊗ C,

∇(Fp) ⊂ Ω1
X ⊗OX

Fp−1;

4 the filtrations W and F define an MHS on each fiber
(LOX

(t),W(t),L(t)) of the bundle LOX
at a point t.

Justin Scarfy (UBC) Hodge-de Rham 1 2015-01-21 23 / 24



Variations of Mixed Hodge Structure (VMHS)

Variations of mixed Hodge structure (VMHS)

Let X be a complex manifold, a variation of mixed Hodge structure
(VMHS) on X consists of

1 a local system LZ of Z-modules of finite type;

2 a finite increasing filtration W of LQ := LZ ⊗Q by sublocal systems
of rational vector spaces;

3 a finite decreasing filtration F by locally free analytic subsheaves of
LOX

:= LZ ⊗OX , whose sections on X satisfy the infinitesimal
Griffths transversality relation with respect to the connection ∇
defined on LOX

by the local system LC := LZ ⊗ C,

∇(Fp) ⊂ Ω1
X ⊗OX

Fp−1;

4 the filtrations W and F define an MHS on each fiber
(LOX

(t),W(t),L(t)) of the bundle LOX
at a point t.

Justin Scarfy (UBC) Hodge-de Rham 1 2015-01-21 23 / 24



Variations of Mixed Hodge Structure (VMHS)

Variations of mixed Hodge structure (VMHS)

Let X be a complex manifold, a variation of mixed Hodge structure
(VMHS) on X consists of

1 a local system LZ of Z-modules of finite type;

2 a finite increasing filtration W of LQ := LZ ⊗Q by sublocal systems
of rational vector spaces;

3 a finite decreasing filtration F by locally free analytic subsheaves of
LOX

:= LZ ⊗OX , whose sections on X satisfy the infinitesimal
Griffths transversality relation with respect to the connection ∇
defined on LOX

by the local system LC := LZ ⊗ C,

∇(Fp) ⊂ Ω1
X ⊗OX

Fp−1;

4 the filtrations W and F define an MHS on each fiber
(LOX

(t),W(t),L(t)) of the bundle LOX
at a point t.

Justin Scarfy (UBC) Hodge-de Rham 1 2015-01-21 23 / 24



Variations of Mixed Hodge Structure (VMHS)

Variations of mixed Hodge structure (VMHS)

Let X be a complex manifold, a variation of mixed Hodge structure
(VMHS) on X consists of

1 a local system LZ of Z-modules of finite type;

2 a finite increasing filtration W of LQ := LZ ⊗Q by sublocal systems
of rational vector spaces;

3 a finite decreasing filtration F by locally free analytic subsheaves of
LOX

:= LZ ⊗OX , whose sections on X satisfy the infinitesimal
Griffths transversality relation with respect to the connection ∇
defined on LOX

by the local system LC := LZ ⊗ C,

∇(Fp) ⊂ Ω1
X ⊗OX

Fp−1;

4 the filtrations W and F define an MHS on each fiber
(LOX

(t),W(t),L(t)) of the bundle LOX
at a point t.

Justin Scarfy (UBC) Hodge-de Rham 1 2015-01-21 23 / 24



Future topics

Future lectures plans

In the upcoming lectures we shall

Introduce and study polylograithms and their connection to Hodge
theory.

Define and examine iterated integrals.

Play with multiple zeta values.

Questions? With Lin(z) :=

∞∑
k=1

zk

kn
, stare at


1 0 0 · · · 0

−Li1(z) 2πi 0 · · · 0
−Li2(z) 2πi log(z) (2πi)2 · · · 0

...
...

...
. . .

...

−Lin(z) 2πi log(z)n−1

(n−1)!
(2πi)2 log(z)n−2

(n−1)! · · · (2πi)n

 .
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