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Introduction and Plan

Why Hodge Theory?

Hodge theory was developed in the 1930's as an extension of de Rham
theory, and it enjoys its applications on three levels:
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Introduction and Plan
Why Hodge Theory?

Hodge theory was developed in the 1930's as an extension of de Rham
theory, and it enjoys its applications on three levels:

@ Riemannian manifolds.

@ Kahler manifolds.
@ algebraic geometry of complex projective varieties.

Of course, due to the focus of this seminar being algebraic-arithmetic
oriented, we shall mainly exploit its applications in the last setting.
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Introduction and Plan
Why Hodge Theory?

Hodge theory was developed in the 1930's as an extension of de Rham
theory, and it enjoys its applications on three levels:

@ Riemannian manifolds.
@ Kahler manifolds.
@ algebraic geometry of complex projective varieties.

Of course, due to the focus of this seminar being algebraic-arithmetic
oriented, we shall mainly exploit its applications in the last setting.

Plan and Warnings for this lecture

This lecture will try to drown you with definitions: we start with a quick
review of de Rham theory, unify certain aspects between Cech
cohomology and singular cohomology, survey a few facts about Kahler
manifolds, define resolutions and hypercohomology, mention a few well
known cohomological realizations of complex projective varieties, and

define many different Hodge structures to play with in the upcoming
2015-01-21 2 /24




(Review of) de Rham Theory (1/3)

Let x1,...,x, be the standard coordinates in R", recall that the de Rham
complex of R™, 2%, is defined to be the free R-algebra (with units)
generated by symbols dz1, ..., dx,, with the relations

{(dwi)Q =0,

dafid.’l’:j = —dl‘jdl‘i.
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(Review of) de Rham Theory (1/3)

Let x1,...,x, be the standard coordinates in R", recall that the de Rham
complex of R™, 2%, is defined to be the free R-algebra (with units)
generated by symbols dz1, ..., dx,, with the relations

{(dwi)Q =0,

daj‘idl’j = —dl‘jd.xi.

Wake up question: what is the dimension of *?

Differential forms on R™

e, we Q"R") iff
W= E f[ dx[?
I

with the multi-index notation I := (i1, ...,1,), dvy = dx;, - - - da;,.
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(Review of) de Rham Theory (2/3)

Recall that the De Rham differential (exterior derivatives) is defined by,
d: QIR") — QITHRY),
such that
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(Review of ) de Rham Theory (2/3)

Recall that the De Rham differential (exterior derivatives) is defined by,
d: QIR") — QITHR"),

such that

Q dis R-linear.
@ For f € Q°(R™) = C>(R"™), df is the one-form acts on a vector field

by df(X) == X(f).
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(Review of) de Rham Theory (2/3)

Recall that the De Rham differential (exterior derivatives) is defined by,
d: QIR") — QITHR"),

such that
Q dis R-linear.
@ For f € Q°(R™) = C>(R"™), df is the one-form acts on a vector field
by df (X) := X(f).

@ For a € Q"(R"), B € Q°(R™), the Leibniz rule holds:
dlaNp)=daAp+(-1)"aAdp.
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(Review of) de Rham Theory (2/3)

Recall that the De Rham differential (exterior derivatives) is defined by,

d: QIR") — Qq“(R”)7
such that
Q@ d is R-linear.

@ For f € Q°(R™) = C>(R"™), df is the one-form acts on a vector field

by df (X) := X(f).

@ For a € Q"(R"), B € Q°(R™), the Leibniz rule holds:
dlaNp)=daAp+(-1)"aAdp.

Q@ i?=dod=0.
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(Review of) de Rham Theory (2/3)

Recall that the De Rham differential (exterior derivatives) is defined by,
d: QIR") — QITHR"),
such that
Q d is R-linear.
@ For f € Q°(R™) = C>(R"™), df is the one-form acts on a vector field
by df (X) := X(f).
@ For a € Q"(R"), B € Q°(R™), the Leibniz rule holds:
dlaNp)=daAp+(-1)"aAdp.
Q@ d>=dod=0.

Example with ¢ =3, n =3

{ f—H J—{ — A }
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(Review of) de Rham Theory (2/3)

Recall that the De Rham differential (exterior derivatives) is defined by,
d: QIR") — QITHR"),
such that
Q d is R-linear.
@ For f € Q°(R™) = C>(R"™), df is the one-form acts on a vector field
by df (X) := X(f).
@ For a € Q"(R"), B € Q°(R™), the Leibniz rule holds:
dlaNp)=daAp+(-1)"aAdp.
Q@ d>=dod=0.

Example with ¢ =3, n =3

QO(R?) QL(R3) Q2(R?) Q3(R3)

| l Lo

{functions}%{vector fieIds}CLrl> {vector fields}dl> {functions}
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(Review of) de Rham Theory (3/3)

de Rham (Dolbeault) cohomology
Let M C R"™ be a smooth manifold, we define

_ ker{d: QI(M) — QT (M)}  {closed g-forms in M}

a (VTR -
Hyp(M;R) := im{d : Q4—1(M) — Qe(M)}  {exact g-forms in M} "
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(Review of) de Rham Theory (3/3)

de Rham (Dolbeault) cohomology
Let M C R"™ be a smooth manifold, we define

HI (M;R) := ker{d : Q4(M) — QT (M)} _ {closed g-forms in M}
ARV im{d s Qe (M) — Q4(M)}  {exact g-forms in M}

though the above cohomology groups takes coefficients in R, we can
extend the scalars to C, by

HY,(M,C) := H,(M,R) ® C.
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(Review of) de Rham Theory (3/3)

de Rham (Dolbeault) cohomology
Let M C R"™ be a smooth manifold, we define

HI (M;R) := ker{d : Q4(M) — QT (M)} _ {closed g-forms in M}
ARV im{d s Qe (M) — Q4(M)}  {exact g-forms in M}

though the above cohomology groups takes coefficients in R, we can
extend the scalars to C, by

HY,.(M,C) := Hi,(M,R) @ C.

de Rham Theorem

The theorem of de Rham (1931) asserts that for a smooth manifold
M C R,
HgR(M7 R) = Hsing(M7 R)v

the singular cohomology of M with coefficients in R.
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Complex of Sheaves

Example 1 of a sheaf: Verify this yourself!
For a smooth manifold M, the set of differential p-forms Qf, form a
sheaf that assigns to each open set U of M the set O} (U) of smooth

p-forms on U.
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For a smooth manifold M, the set of differential p-forms Qf, form a
sheaf that assigns to each open set U of M the set O} (U) of smooth

p-forms on U.

Example 2 of a sheaf: This is somewhat trivial

Ry, the locally constant sheaf on M that assigns to each open set U the
set Rps(U) of locally constant function on U.
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Complex of Sheaves

Example 1 of a sheaf: Verify this yourself!

For a smooth manifold M, the set of differential p-forms Qf, form a
sheaf that assigns to each open set U of M the set O} (U) of smooth
p-forms on U.

Example 2 of a sheaf: This is somewhat trivial

Ry, the locally constant sheaf on M that assigns to each open set U the
set Rps(U) of locally constant function on U.

Complex of Sheaves

A complex of sheaves is a collection of sheaves F;,i € Z, together with
morphisms of sheaves d; : F; — F;11 such that d;1; od; = 0.
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Resolutions

Let F,G,H be three sheaves, and let ¢ : F — G,¢ : G — H be
morphisms of sheaves such that i) o ¢ = 0.
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Resolutions

Let F,G,H be three sheaves, and let ¢ : F — G,¢ : G — H be
morphisms of sheaves such that i) o ¢ = 0.

The complex F* is called a resolution of F if for every ¢ > 0, the sequence
i i il Pkl 42
F =S FPT = F

is exact in the middle, and j is injective with j(F) = ker ¢y.
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Resolutions

Let F,G,H be three sheaves, and let ¢ : F — G,¢ : G — H be
morphisms of sheaves such that i) o ¢ = 0.

The complex F* is called a resolution of F if for every ¢ > 0, the sequence
i Di il ikl it2
F =S FT == F

is exact in the middle, and j is injective with j(F) = ker ¢y.

Fine resolution

The complex F* is called a fine resolution of F if for every i > 0, the
sequence

0 F — FO 2 F1 2 g2 92,

is everywhere exact.
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Cech cohomology (1/3)

Let 7 be an totally ordered set, and define an abstract simplicial
complex A on Z be a collection of a finite subset of Z, closed under
taking subsets. Each F' € A is called a face of A. If U = {U,}ier is a
locally finite cover of M, then we associate to U an abstract simplicial
complex N (U), called the nerve of U, and the faces of N'(U) are the sets
with {Uil, ceey Ulk} with U;; N---N Uik #* 0.
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Cech cohomology (1/3)

Let 7 be an totally ordered set, and define an abstract simplicial
complex A on Z be a collection of a finite subset of Z, closed under
taking subsets. Each F' € A is called a face of A. If U = {U,}ier is a
locally finite cover of M, then we associate to U an abstract simplicial
complex N (U), called the nerve of U, and the faces of N'(U) are the sets
with {Uil, ceey Ulk} with U;; N---N Uik #* 0.

Refinement

Let & and V be open covers of M, then V is a refinement of U{ if every
element in V is contained in U.
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Cech cohomology (1/3)

Let 7 be an totally ordered set, and define an abstract simplicial
complex A on Z be a collection of a finite subset of Z, closed under
taking subsets. Each F' € A is called a face of A. If U = {U,}ier is a
locally finite cover of M, then we associate to U an abstract simplicial
complex N (U), called the nerve of U, and the faces of N'(U) are the sets
with {Uil, ceey Ulk} with U;; N---N Uik #* 0.

Refinement
Let & and V be open covers of M, then V is a refinement of U{ if every
element in V is contained in U.

Cech Theorem

Let U be a locally finite open cover of M, and if all intersections of sets in
U (including U) are contractible, then N (U) is homotopically equivalent
to M.
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Cech cohomology (2/3)

A cover which satisfies the hypothesis in the above Theorem is called a
Cech cover, and all smooth manifolds admit Cech covers (fact).
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Cech cohomology (2/3)

Cech covers

A cover which satisfies the hypothesis in the above Theorem is called a
Cech cover, and all smooth manifolds admit Cech covers (fact).

Cech cochains

Let F be a sheaf on M, and U = {U;} be a locally finite open cover of
M. A Cech k-cochain is a function o on the k-faces of A/(U) such that
the value on the face Uy, ..., U;, liesin F(U;, N---NU;,), i.e., the group
of k-cochains is

CHU, F) = Big<.ci, Uig N+ Us).

v
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Cech cohomology (2/3)

Cech covers

A cover which satisfies the hypothesis in the above Theorem is called a
Cech cover, and all smooth manifolds admit Cech covers (fact).

Cech cochains

Let F be a sheaf on M, and U = {U;} be a locally finite open cover of
M. A Cech k-cochain is a function o on the k-faces of A/(U) such that
the value on the face Uy, ..., U;, liesin F(U;, N---NU;,), i.e., the group
of k-cochains is

CHU, F) = Big<.ci, Uig N+ Us).

with the coboundary operator d sends k-cochains to (k + 1)-cochains:

d:a(Uyn--NU) = Y (=) ai,n---nU;N---NT,).
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Cech cohomology (3/3)

Since the coboundary operator d satisfies d> = 0, we obtain a chain
complex of chains F*(X) of chains, which we call the Cech complex of

F associated to U, and the Cech cohomology of F with respect to I/ is
defined to be:

] _ kerd: F¥(M) — FM(M)
HY U, F) = imd : FF=Y(M) — FF(M)
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Cech cohomology (3/3)

Since the coboundary operator d satisfies d> = 0, we obtain a chain
complex of chains F*(X) of chains, which we call the Cech complex of

F associated to U, and the Cech cohomology of F with respect to I/ is
defined to be:

kerd : FE(M) — FF1(M)

HY U, F) = imd : FE=1(M) — F*(M)

Cech cohomology group
Let F be a sheaf of M, the kth Cech cohomology group of F is

H* (M, F) = lim H* (U, F)
u

where the covers U are ordered by refinement.
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Proof of de Rham Theorem

It can be shown that H*(M,Ry,) and Hsking(M, R) are isomorphic, as
singular cochains can be approximated by Cech cochains for a very refined
cover U of M.
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Proof of de Rham Theorem

It can be shown that H*(M,Ry;) and HE

sing
singular cochains can be approximated by Cech cochains for a very refined
cover U of M.

(M, R) are isomorphic, as

Let F be a sheaf on M and let
0=F—=F = Fl ...

be a fine resolution of F. Suppose that I/ is an open cover of M such
that the sequence of homomorphisms

FI Ui N0 Us) = F Uiy -0 U;,) = FH (U, 0N U, )

is exact for every face {U;, N---NU;, } of N(U), then
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Proof of de Rham Theorem

It can be shown that H*(M,Ry;) and HE

sing
singular cochains can be approximated by Cech cochains for a very refined
cover U of M.

(M, R) are isomorphic, as

Let F be a sheaf on M and let
0=F—=F = Fl ...

be a fine resolution of F. Suppose that I/ is an open cover of M such
that the sequence of homomorphisms

FI Ui N0 Us) = F Uiy -0 U;,) = FH (U, 0N U, )

is exact for every face {U;, N---NU;, } of N(U), then

HU,F)= H(M,F), andfinally, H(M,Ry)= Hra(M). J
0
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Kahler manifolds

A Kahler manifold is a manifold with three mutually compatible structures:
a complex structure, a Riemannian structure, and a symplectic structure.

Justin Scarfy (UBC) Hodge-de Rham 1 2015-01-21 12 /24



Kahler manifolds

A Kahler manifold is a manifold with three mutually compatible structures:
a complex structure, a Riemannian structure, and a symplectic structure.

Symplectic Structure

A symplectic structure on a 2d-dimensional manifold M is a closed
2-form w € \*(M), the set of alternating 2-forms on M, such that
Q = w/d! (the volume form), is nowhere vanishing.

Reality test: What about when w € Sym?(M)?
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Kahler manifolds

A Kahler manifold is a manifold with three mutually compatible structures:
a complex structure, a Riemannian structure, and a symplectic structure.

Symplectic Structure

A symplectic structure on a 2d-dimensional manifold M is a closed
2-form w € \*(M), the set of alternating 2-forms on M, such that
Q = w?/d! (the volume form), is nowhere vanishing.

Reality test: What about when w € Sym?(M)?

Hermitian metric

| A

Let M C C™ be a complex manifold and J is complex structure (atlas),
and a Riemannian metric g on M is said to be a Hermitian metric if and
only if for every p € M, the bilinear form g, on the tangent space T},(M),
is compatible with the complex structure .Jj,.
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Kahler manifolds

Kahler metric

A Hermitian metric on a manifold M is said to be a Kahler metric if and
only if the 2-form

w(X,Y) =g(JX,Y)

is closed. And a complex manifold to be a Kalher manifold if it admits to
a Kahler structure and refer to w as a Kahler form.

v
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Kahler manifolds

Kahler metric

A Hermitian metric on a manifold M is said to be a Kahler metric if and
only if the 2-form

w(X,Y) =g(JX,Y)

is closed. And a complex manifold to be a Kalher manifold if it admits to
a Kahler structure and refer to w as a Kahler form.

Hodge decomposition theorem

Let M be a compact Kahler manifold and HP4(M) the space of de Rham
cohomology classes for HP™4(M,C) that have a representation of bidegree
(p,q). Then

H*(M,C) = @ H"(M),
p+q
HPY = Ha.p,

V.

Justin Scarfy (UBC) Hodge-de Rham 1 2015-01-21 13 /24



Hypercohomology (1/3)

Let A and B be two abelian categories, and let
F:A—B

be a functor.
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Hypercohomology (1/3)

Let A and B be two abelian categories, and let
F:A—B

be a functor.

e A is said to have sufficiently many injective objects, if for every
object A of A, there exists a monomorphism A — I with [ injective,
and I € A is injective if every short exact sequence

O0—-1I—-M-—N-—=0

splits.
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Hypercohomology (1/3)

Let A and B be two abelian categories, and let
F:A—B

be a functor.

e A is said to have sufficiently many injective objects, if for every
object A of A, there exists a monomorphism A — I with [ injective,
and I € A is injective if every short exact sequence

O0—-1I—-M-—N-—=0

splits.
@ F is said to be left-exact, if for every short exact sequence
0 — A— B — C — 0 of objects in A, the sequence

0— F(A) - F(B) = F(C)

of objects in B is exact.
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Hypercohomology (2/3)

Let A and B be two abelian categories, where A has sufficiently many
injective objects and let

F:A—B

be left exact functor. For a left-bounded complex AM*® of A, we define the
ith derived object R'F(M?*) as follows:
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Hypercohomology (2/3)

Let A and B be two abelian categories, where A has sufficiently many
injective objects and let
F:A—B

be left exact functor. For a left-bounded complex M*® of A, we define the
ith derived object R'F(M?*) as follows:

Let ¢* : M* — I°® be a quasi-isomorphism, (i.e., a morphism such that
the induced morphisms

H™(M®) — H"(I*)

is an isomorphism for all n), with i* injective for every k, where I® is an
injective left bounded complex of A.
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Hypercohomology (2/3)

Let A and B be two abelian categories, where A has sufficiently many
injective objects and let
F:A—B

be left exact functor. For a left-bounded complex M*® of A, we define the
ith derived object R'F(M?*) as follows:

Let ¢* : M* — I°® be a quasi-isomorphism, (i.e., a morphism such that
the induced morphisms

H™(M®) — H"(I*)

is an isomorphism for all n), with i* injective for every k, where I® is an
injective left bounded complex of A.

Hypercohomology

Define the hypercohomology
H'(F(I°%)) := R'F(M?®), the right derived functor of F.
2015-01-21 15 / 24




Hypercohomology (3/3)
Example: The hypercohomology of a complex of sheaves

The hypercohomology of a complex £°® of sheaves of abelian groups on a
topological space X generalizes the cohomology of a single sheaf:

v
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Hypercohomology (3/3)

Example: The hypercohomology of a complex of sheaves
The hypercohomology of a complex £°® of sheaves of abelian groups on a
topological space X generalizes the cohomology of a single sheaf:

First form the double complex of global sections of the fine resolutions of
the sheaves LY:

K = @KW—@F ,CPLY).

v
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Hypercohomology (3/3)

Example: The hypercohomology of a complex of sheaves

The hypercohomology of a complex £°® of sheaves of abelian groups on a
topological space X generalizes the cohomology of a single sheaf:
First form the double complex of global sections of the fine resolutions of

the sheaves £4:
K = P K =@r(x,cree).
P.q P,q

The hypercohomology H(X, L£®) is the total cohomology of the double
complex, i.e., the cohomology of the associated single complex

-Pr' =D D &
k ptg=k

with differential D := § + (—1)Pd, (6 and d the horizontal and vertical
differential of the complex K):
H(X, L) := HE(K®).
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Facts from Motives and Cohomological Realizations

Let k be a field with algebraic closure & C C (so char(k) = 0). Consider

smooth projective varieties (so it a pure motive) X over k. There are
several ‘nice’ cohomology theory:
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Facts from Motives and Cohomological Realizations

Let k be a field with algebraic closure k C C (so char(k) = 0). Consider

smooth projective varieties (so it a pure motive) X over k. There are
several ‘nice’ cohomology theory:

sing

o the Betti realization Hj;(X) = H} (X2, Q), a Q-vector space),
the singular cohomology of the topological space X&".
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Facts from Motives and Cohomological Realizations

Let k be a field with algebraic closure k C C (so char(k) = 0). Consider
smooth projective varieties (so it a pure motive) X over k. There are
several ‘nice’ cohomology theory:

o the Betti realization Hp(X) = H (X2, Q), a Q-vector space),
the singular cohomology of the topological space X&".

o the de Rham realization
Hin(X) = H(X, Q).

(a k-vector space with a Hodge filtration), the algebraic de Rham
cohomology, i.e., the hypercohomology of the sheaf Q}/k of algebraic
differential forms on X.
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Facts from Motives and Cohomological Realizations

Let k be a field with algebraic closure k C C (so char(k) = 0). Consider
smooth projective varieties (so it a pure motive) X over k. There are
several ‘nice’ cohomology theory:

o the Betti realization Hp(X) = H (X2, Q), a Q-vector space),
the singular cohomology of the topological space X&".

o the de Rham realization
Hin(X) = H(X, Q).

(a k-vector space with a Hodge filtration), the algebraic de Rham
cohomology, i.e., the hypercohomology of the sheaf Q}/k of algebraic
differential forms on X.

o the ¢-adic realization Hj(X) = H; (X}, Qr) (a Qg-vector space
with Gal(k/k)-action), the ¢-adic étale cohomology.
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Real Hodge Structures

(Real) Hodge Structure
A (real) Hodge structure (HS) of weight k € Z is consists of
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(Real) Hodge Structure
A (real) Hodge structure (HS) of weight k € Z is consists of

@ a finite dimensional real vector space V.
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Real Hodge Structures

(Real) Hodge Structure
A (real) Hodge structure (HS) of weight k € Z is consists of

@ a finite dimensional real vector space V.

@ a decomposition of the complexification Vg := V ®¢c R as

Ve = @ VP, VP — b,
p+q=k
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Real Hodge Structures
(Real) Hodge Structure

A (real) Hodge structure (HS) of weight k € Z is consists of
@ a finite dimensional real vector space V.

@ a decomposition of the complexification Vg := V ®¢c R as

Ve = @ VP, VP — b,
p+q=k

We say that the Hodge structure is rational (resp. integral) if there exists
a rational vector space Vg (rep. a lattice Vz) such that V = Vg ®g R
(resp. V =Vz ®z R).
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Real Hodge Structures

(Real) Hodge Structure
A (real) Hodge structure (HS) of weight k € Z is consists of

@ a finite dimensional real vector space V.
@ a decomposition of the complexification Vg := V ®¢c R as

Ve = @ VP, VP — b,
ptq=k

We say that the Hodge structure is rational (resp. integral) if there exists
a rational vector space Vg (rep. a lattice Vz) such that V = Vg ®g R
(resp. V =Vz ®zR).

alternate definition of HS via (induced) filtration (1/2)

A HS of weight k consists of a real vector space V' and a decreasing
filtration

—1
. CFPCFP (...
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Hodge Structures
alternate definition of HS via (induced) filtration (2/2)

of the complex vector space Vg = V ®r C such that

Ve = FP @ Fk—p+1,
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Hodge Structures
alternate definition of HS via (induced) filtration (2/2)

of the complex vector space Vg = V ®r C such that

Ve = FP @ Fk—p+1,

Example: The Tate-Hodge structure (THS)
Z(1) is an HS of weight —2 defined by the finitely generated abelian group

Hy = 2miZ c C, He=H b1

is bigraded of type (—1,—1), of rank 1. The m-tensor product
Z(1)®---®Z(1) is a HS of weight —2m denoted by Z(m):

Hz = (2ni)"Z CC,  Hc=H ™™
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Hodge Structures

alternate definition of HS via (induced) filtration (2/2)
of the complex vector space Vg = V ®r C such that

Ve = FP @ Fk—p+1,

Example: The Tate-Hodge structure (THS)
Z(1) is an HS of weight —2 defined by the finitely generated abelian group

Hy = 2miZ c C, He=H b1

is bigraded of type (—1,—1), of rank 1. The m-tensor product
Z(1)®---®Z(1) is a HS of weight —2m denoted by Z(m):

Hz = (2ni)"Z CC,  Hc=H ™™

Remark: 27i is an example of a period, a number written as a integral
over a topical chain of an differential form (algebraic in some sense).

y
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Mixed Hodge Structure

Mixed Hodge Structure (MHS)
Let A=7,Q, or R. An A-mixed Hodge structure H consists of

v
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Mixed Hodge Structure

Mixed Hodge Structure (MHS)
Let A=7,Q, or R. An A-mixed Hodge structure H consists of
@ an A-module of finite type H 4;

v
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Mixed Hodge Structure

Mixed Hodge Structure (MHS)
Let A=7,Q, or R. An A-mixed Hodge structure H consists of
@ an A-module of finite type H 4;

@ a finite increasing filtration W, of A ® Q-vector space H 5gq called
the weight filtration:

o CWio1Hago €S WinHagg € W1 Hagg € -

v
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Mixed Hodge Structure

Mixed Hodge Structure (MHS)
Let A=7,Q, or R. An A-mixed Hodge structure H consists of
@ an A-module of finite type H 4;

@ a finite increasing filtration W, of A ® Q-vector space H 5gq called
the weight filtration:

o CWio1Hago €S WinHagg € W1 Hagg € -

© a finite decreasing filtration F'® of the C-vector space
He = Hpy ®4 C, called the Hodge filtration:

D FP'He D FPHe 2 FPM He D - -
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Mixed Hodge Structure

Mixed Hodge Structure (MHS)
Let A=7,Q, or R. An A-mixed Hodge structure H consists of
@ an A-module of finite type H 4;

@ a finite increasing filtration W, of A ® Q-vector space H 5gq called
the weight filtration:

- C Win—1Hagg € WinHagg € Wint1Hagg C -+

© a finite decreasing filtration F'® of the C-vector space
He = Hpy ®4 C, called the Hodge filtration:

D FP'Hc D FPHe D FPMHE D -

@ the systems satisfy W€ := W ®C, such that the sgstems
GrlV H — (Gr” (HA®@) (GrY (Hagq) ® C,GrY" Hc, F))
= (GrrnWc He, (GrY “ H, F))are A® Q-HS of weight n
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Mixed Tate Hodge structure
Example: Mixed Tate-Hodge structure (MTHS)

Hg is a MTHS if

0, if n is odd,
PQ(—3), ifniseven.
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Mixed Tate Hodge structure

Example: Mixed Tate-Hodge structure (MTHS)

Hg is a MTHS if

T
Gr,‘;V Heg = 0, ) | n !s odd,
PQ(—3), ifniseven.

Hence the main difference between MHS and MTHS is that of the weight
filtration, i.e., the weight filtration of MTHS only is nontrivial only at even
integers:

< C Wom—oHagg € WomHagg € WomqoHagg C - -+
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Mixed Tate Hodge structure

Example: Mixed Tate-Hodge structure (MTHS)

Hg is a MTHS if

T
Gr,ZV Heg = 0, ) | n !s odd,
D Q(—35), ifniseven.

Hence the main difference between MHS and MTHS is that of the weight

filtration, i.e., the weight filtration of MTHS only is nontrivial only at even
integers:

< C Wom—oHagg € WomHagg € WomioHagg C - -+

Though the definition of MTHS is not widely used, it is MTHS which have
connections with polylogrithms, which will appear in future lectures.
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Variations of Hodge Structure (VHS)
Variations of Hodge Structure (VHS)

Let B be a connected complex manifold. A variation of Hodge
structure of weight k£ (VHS) over B consists of

© a local system Vy of free Z-modules;
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Variations of Hodge Structure (VHS)
Variations of Hodge Structure (VHS)

Let B be a connected complex manifold. A variation of Hodge
structure of weight k£ (VHS) over B consists of

© a local system Vy of free Z-modules;

@ a filtration of the associated holomorphic vector bundle V,
CFPCFp_l € oos

by holomorphic subbundles (Hodge bundles) F? satisfying:
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Variations of Hodge Structure (VHS)
Variations of Hodge Structure (VHS)

Let B be a connected complex manifold. A variation of Hodge
structure of weight k£ (VHS) over B consists of

© a local system Vy of free Z-modules;

@ a filtration of the associated holomorphic vector bundle V,
C[E‘PCIE‘P_l € oos

by holomorphic subbundles (Hodge bundles) F? satisfying:

» V =TFP? @ Fk—prtl 35 C* bundles, where the conjugation is taken
relative to the local system of real vector spaces Vi := V7 ® R,
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Variations of Hodge Structure (VHS)
Variations of Hodge Structure (VHS)

Let B be a connected complex manifold. A variation of Hodge
structure of weight k£ (VHS) over B consists of

© a local system Vy of free Z-modules;

@ a filtration of the associated holomorphic vector bundle V,
C[E‘PCFP_l € oos

by holomorphic subbundles (Hodge bundles) F? satisfying:

» V =TFP? @ Fk—prtl 35 C* bundles, where the conjugation is taken
relative to the local system of real vector spaces Vi := V7 ® R,

» V(FP) C QlB ® FP~L where V is the flat connection on V, and FP
the sheaf of holomorphic sections of [FP.
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Variations of Hodge Structure (VHS)
Variations of Hodge Structure (VHS)

Let B be a connected complex manifold. A variation of Hodge
structure of weight k£ (VHS) over B consists of

© a local system Vy of free Z-modules;

@ a filtration of the associated holomorphic vector bundle V,
C[E‘PCFP_l € oos

by holomorphic subbundles (Hodge bundles) F? satisfying:

» V =FP @Fk-Pt+l 35 C° bundles, where the conjugation is taken
relative to the local system of real vector spaces Vi := V7 ® R,

» V(FP) C QlB ® FP~L where V is the flat connection on V, and FP
the sheaf of holomorphic sections of [FP.

Example of a variation of Hodge structure

Find your own!
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Variations of Mixed Hodge Structure (VMHS)

Variations of mixed Hodge structure (VMHS)

Let X be a complex manifold, a variation of mixed Hodge structure
(VMHS) on X consists of

v
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Variations of Mixed Hodge Structure (VMHS)

Variations of mixed Hodge structure (VMHS)

Let X be a complex manifold, a variation of mixed Hodge structure
(VMHS) on X consists of

© a local system Ly of Z-modules of finite type;

v
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Variations of Mixed Hodge Structure (VMHS)

Variations of mixed Hodge structure (VMHS)

Let X be a complex manifold, a variation of mixed Hodge structure
(VMHS) on X consists of

© a local system Ly of Z-modules of finite type;

@ a finite increasing filtration W of Lg := L7 ® Q by sublocal systems
of rational vector spaces;

v
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Variations of Mixed Hodge Structure (VMHS)

Variations of mixed Hodge structure (VMHS)

Let X be a complex manifold, a variation of mixed Hodge structure
(VMHS) on X consists of

© a local system Ly of Z-modules of finite type;

@ a finite increasing filtration W of Lg := L7 ® Q by sublocal systems
of rational vector spaces;

© a finite decreasing filtration F by locally free analytic subsheaves of
Lo, = L7 ® Ox, whose sections on X satisfy the infinitesimal
Griffths transversality relation with respect to the connection V
defined on Lo, by the local system L¢ := L7 ® C,

V(F?) C Ok ®ox FPY

v
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Variations of Mixed Hodge Structure (VMHS)

Variations of mixed Hodge structure (VMHS)

Let X be a complex manifold, a variation of mixed Hodge structure
(VMHS) on X consists of

© a local system Lz of Z-modules of finite type;

@ a finite increasing filtration W of Lg := L7 ® Q by sublocal systems
of rational vector spaces;

© a finite decreasing filtration F by locally free analytic subsheaves of
Loy = Lz ® Ox, whose sections on X satisfy the infinitesimal
Griffths transversality relation with respect to the connection V
defined on Lo, by the local system L¢ := Lz ® C,

V(FP) C Ok ®o, FP7

@ the filtrations YW and F define an MHS on each fiber
(Loy (t),W(t),L(t)) of the bundle Lo, at a point .
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Future topics

Future lectures plans

In the upcoming lectures we shall

ok
. T z
Questions? With Li,(z) := E =y stare at
k=1

1 0 0 0
—Lij(2) 2mi 0 0
—Lig(2) 2milog(2) (27i)? e 0
—Lin(z) e Gmdigd’ L (o)

Justin Scarfy (UBC) Hodge-de Rham 1 2015-01-21 24 / 24



Future topics

Future lectures plans

In the upcoming lectures we shall

@ Introduce and study polylograithms and their connection to Hodge

theory.
©  _k
Questions? With Li,(z) := Z Z—n stare at
k=1
1 0 0 0
—Lij(2) 2mi 0 e 0
—Lig(2) 2milog(2) (27i)? 0
—Lin(z) e Gmdigd’ L (o)
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Future topics

Future lectures plans
In the upcoming lectures we shall

@ Introduce and study polylograithms and their connection to Hodge
theory.

@ Define and examine iterated integrals.

ok
. T z
Questions? With Li,(z) := E =y stare at
k=1

1 0 0 0
—Lij(2) 2mi 0 0
—Lig(2) 2milog(2) (27i)? e 0
—Lin(z) e Gmdigd’ L (o)
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Future topics

Future lectures plans

In the upcoming lectures we shall

@ Introduce and study polylograithms and their connection to Hodge
theory.

@ Define and examine iterated integrals.

@ Play with multiple zeta values.

ok
. T z
Questions? With Li,(z) := E =y stare at
k=1

1 0 0 0
—Lij(2) 2mi 0 0
—Lig(2) 2milog(2) (27i)? e 0
—Lin(z) e Gmdigd’ L (o)
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