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Motivational Problem
Let M be a smooth manifold and α, β ∈ Pa,a(M). Then for any (closed or
not) 1-form ω on M ,∫

αβ
ω =

∫
α
ω +

∫
β
ω =

∫
β
ω +

∫
α
ω =

∫
βα
ω,

i.e., ordinary line integrals are intrinsically abelian – they are unable to
detect the order in which we compose α and β. Hence, ordinary line
integrals cannot detect elements of the commutator subgroup of π1(M,a).

Fundamental Question

How can we use differential forms to detect elements of π1(M,a) that
vanish in H1(M,R)?

Kuo-Tsai Chen (1923-1987)’s Answer

Chen gave a non-abelian generalization of the standard line integral: these
are called iterated line integrals
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Definitions (1/2)

Time Ordered Integral

Let ω1, . . . , ωr be smooth 1-forms on M with values in an associated R
algebra A = C,Mn(R) or Mn(C), i.e., ωj ∈ Ω1

R(M)⊗R A. Suppose
γ ∈ PM , define∫

γ
ω1 · · ·ωr ∈ A :=

∫
0≤t1≤t2≤···≤tr≤1

f1(t1) · · · fr(tr) dt1 · · · dtr,

where γ∗ωj = fj(t) dt, called the time ordered integral. The integral is to
be viewed as function ∫

ω1 · · ·ωr : PM → A.

Homotopy Functional

With S a set, a function F : PM → S is called a homotopy functional if
the value of F on a path γ only depends on its homotopy class in Pa,bM .
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Definitions (2/2)

Homotopy Functional explained

More precisely, for each pair of points a, b ∈M , there is a function
fa,b : π(M ; a, b)→ S such that the diagram below commutes

Pa,bM
F−→ S

π(M ; a, b)
? fa,b

-

A homotopy functional F : PM → S induces a function
φF : π1(M,a)→ S by taking the homotopy class of a loop γ to F(γ).
More generally, it induces functions φF : π(M ; a, b)→ S.

Restatement of the Question we are after

The basic problem, then, is to find all iterated integrals that are homotopy
functionals.
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Basic Properties of Iterated Integrals (1/6)
Let f : M → N is a smooth mapping between smooth manifolds, and
ω1, . . . , ωr ∈ Ω1(N) and α ∈ PM , then∫

f◦α
ω1 · · ·ωr =

∫
α
f∗ω1f

∗ω2 · · · f∗ωr.

Iterated integrals also enjoy a combinatorial nature

They reflect the combinatorics of simplices, and we exploit this property to

1 evaluate an iterated integral on the product of two paths,

2 pointwise multiply two iterated integrals (as functions on PM).

3 evaluate an iterated integral on the inverse of a path.

Our model for the standard r-simplex is the time ordered r-simplex:

∆r = {(t1, . . . , tr) ∈ Rr : 0 ≤ t1 ≤ . . . ≤ tr ≤ 1}.
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Basic Properties of Iterated Integrals (2/6)

Now the definition of a basic iterated line integral may be viewed as:∫
γ
ω1 · · ·ωr =

∫
∆r

(p∗1γ
∗ω1) ∧ · · · ∧ (p∗rγ

∗ωr),

with pj : Rr → R being the projection onto the jth coordinate.

Facts about time ordered r-simplex

With t0 = 0 and tr+1 = 1,

∆r =
r⋃
j=0

{(t1, . . . , tr) : 0 ≤ t1 ≤ · · · ≤ tj ≤ 1/2 ≤ tj+1 ≤ · · · ≤ tr}

and that there is a natural identification of ∆j ×∆r−j with

{(t1, . . . , tr) : 0 ≤ t1 ≤ · · · ≤ tj ≤ 1/2 ≤ tj+1 ≤ · · · ≤ tr}.
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Basic Properties of Iterated Integrals (3/6)

More facts about time ordered r-simplex

Viewing ∆r ×∆s ⊂ Rr × Rs = Rr+s, we have

∆s ×∆s =
⋃

σ∈Sh(r,s)

: {(t1, . . . , tr+s) : 0 ≤ tσ(1) ≤ · · · ≤ tσ(r+s) ≤ 1},

where Sh(r, s) is the set of shuffle of type (r, s) of permutations σ of
{1, 2, . . . , r + s}, i.e., a permutation with

σ−1(1) < · · · < σ−1(r) and σ−1(r + 1) < · · · < σ−1(r + s).

When ω1, ω2, . . . are smooth 1-forms on the manifold M .

Coproduct: If α, β ∈ PM are composable (i.e. α(1) = β(0)), then∫
αβ
ω1 · · ·ωr =

r∑
j=0

∫
α
ω1 · · ·ωj

∫
β
ωj+1 · · ·ωr.

Justin Scarfy (UBC) Hodge-de Rham III 2015-02-04 7 / 20



Basic Properties of Iterated Integrals (3/6)

More facts about time ordered r-simplex

Viewing ∆r ×∆s ⊂ Rr × Rs = Rr+s, we have

∆s ×∆s =
⋃

σ∈Sh(r,s)

: {(t1, . . . , tr+s) : 0 ≤ tσ(1) ≤ · · · ≤ tσ(r+s) ≤ 1},

where Sh(r, s) is the set of shuffle of type (r, s) of permutations σ of
{1, 2, . . . , r + s}, i.e., a permutation with

σ−1(1) < · · · < σ−1(r) and σ−1(r + 1) < · · · < σ−1(r + s).

When ω1, ω2, . . . are smooth 1-forms on the manifold M .

Coproduct: If α, β ∈ PM are composable (i.e. α(1) = β(0)), then∫
αβ
ω1 · · ·ωr =

r∑
j=0

∫
α
ω1 · · ·ωj

∫
β
ωj+1 · · ·ωr.

Justin Scarfy (UBC) Hodge-de Rham III 2015-02-04 7 / 20



Basic Properties of Iterated Integrals (4/6)

Shuffle Product: If α ∈ PM , then∫
α
ω1 · · ·ωr

∫
ωr+1 · · ·ωr+s =

∑
σ∈Sh(r,s)

ωσ(1)ωσ(2) · · ·ωσ(r+s).

Antipode: If α ∈ PM , then∫
α−1

ω1 · · ·ωr = (−1)r
∫
α
ωr · · ·ω1.

Iterated Integrals are Unique up to Path-Homotopy

Iterated integrals
∫
ω1 · · ·ωr : PM → A factor through the quotient

mapping PM → PM/ ∼, i.e. if α ∼ β ∈ PM , then∫
α
ω1 · · ·ωr =

∫
β
ω1 · · ·ωr.
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Basic Properties of Iterated Integrals (5/6)
The set (Px,xM)/ ∼ has a well defined associative product

[(Px,xM)/ ∼]× [(Px,xM)/ ∼]→ (Px,xM)/ ∼ .

Denote the constant path at x by 1x, and set

P (M,x) :=
∐

(Px,xM)/∼

Z,

as an associative algebra whose elements are formal finite linear
combinations

c :=
∑

γ∈Px,xM

nγγ.

Iterated integrals with values in A thus define functions∫
ω1 · · ·ωr : P (M,x)→ A,

c 7→
〈∫

ω1 · · ·ωr, c
〉
.
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Basic Properties of Iterated Integrals (6/6)

Nilpotence of Iterated Integrals

Let r, s ≥ 1, ω1, . . . , ωr ∈ Ω1(M) and α1, . . . , αs ∈ P (M,x), then〈∫
ω1 · · ·ωr, (α1 − 1x) · · · (αs − 1x)

〉
=

{∏r
j=1

∫
αj
ωj if s ≤ r,

0 if s > r.

Remark and an Example

This generalizes the standard line integrals (r = 1) as〈∫
ω, (α1 − 1x)(α2 − 1x)

〉
=

〈∫
ω, α1α2 − α1 − α2 + 1x

〉
=

∫
α1α2

ω −
∫
α1

ω −
∫
α2

ω +

∫
1x

ω = 0.

A Word on its Proof

Chen used group algebra to
Justin Scarfy (UBC) Hodge-de Rham III 2015-02-04 10 / 20



The Group Algebra and its Dual (1/5)

Group Algebra

Let G be a discrete group and R a commutative ring with 1. Denote the
group algebra of G over R by R[G] with the definition

R[G] :=

{ finite∑
g∈G

rgg : rg ∈ R
}
.

The augmentation is the homomorphism ε : R[G]→ R defined by

ε :
∑
g∈G

rgg 7→
∑
g∈G

rg.

The kernel of ε is called the augmentation ideal and denoted JR, and
powers of JR,

R[G] = J0
R ⊇ JR ⊇ J2

R ⊃ · · ·

define a topology, called the JR-adic topology, on R[G].
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The Group Algebra and its Dual (2/5)

JR-adic Completion of R[G]

Note that this topology is not usually separated, i.e., the intersection of
the powers of JR is not always trivial. The J-adic completion of R[G] is

R̂[G] := lim←−
m

R[G]/Jm.

Facts

The graded algebra
∞⊕
m=0

JmR /J
R+1
m

is generated by JR/J
2
R, and a section of the projection ĴR → JR/J

2
R

induces an algebra homomorphism

T (JR/J
2
R)→ R̂[G],
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The Group Algebra and its Dual (3/5)

Facts

with dense image, where

T (V ) := R⊕
⊕
m>0

V ⊕m

denotes the free associative R-algebra generated by the R-module V .

Hence if H1(π;R) is a free R-module, then R̂[G] is the quotient of the
completed tensor algebra

̂T (H1(G;R))

generated by H1(G;R) where the projection ̂T (H1(G;R))→ R̂[G]
induces the identity

H1(π;R) ∼= I/I2 → J/J2 ∼= H1(G;R).
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The Group Algebra and its Dual (4/5)

Continuous Group Algebra Homomorphisms

For a discrete R-module N , define

Homcts
R (R[G], N) := lim−→

m

HomR(R[G]/Jm, N),

and its continuous dual

Homcts
R (R[G], R) = Homcts

R (Z[G], R)

is a commutative R-algebra whose product is pointwise multiplication of
functions.

Hopf Algebra

An augmented bialgebra is an K-algebra (K a field) H → K with a
homomorphism, ∆ : H → H ×H, called the comultiplication. A
commutative Hopf algebra is an augmented bialgebra together with a
homomorphism S : A→ A, called the antipode, which is compatible with

Justin Scarfy (UBC) Hodge-de Rham III 2015-02-04 14 / 20



The Group Algebra and its Dual (5/5)

the augmentation, multiplication and comultiplication, i.e., see diagram on
the board.

The Dual Filtration of the J-adic topology

R = B0Homcts
R (R[G], R) ⊆ B1Homcts

R (R[G], R) ⊆ B2Homcts
R (R[G], R) ⊆ · · ·

of Homcts
R (R[G], R), where

BmHomcts
R (R[G], R) := Homcts

R (R[G]/Jm+1, R),

hence, Homcts
R (R[G], R) is a filtered Hopf algebra, i.e. is the

multiplication, comultiplication and antipode induce mappings

B ⊗Bm → Bm+n, by Bn 7→
∑
j+k=n

Bj ⊗Bk and Bm 7→ Bm.
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Chen’s dR Theorem for the Fundamental Group (1/3)

Ch(Px,yM ;F )

Let M be a connected manifold, x, y, z ∈M and that F = R or C.
Denote the set of iterated integrals PM → F restricted to Px,yM by
Ch(Px,yM ;F ).

The shuffle product formula implies that this is an F -algebra.

The coproduct formula implies that the mapping

Ch(Px,zM ;F )→ Ch(Px,yM ;F )⊗F Ch(Py,zM : F )∫
ω1 · · ·ωr 7→

r∑
j=0

∫
ω1 · · ·ωj ⊗

∫
ωj+1 · · ·ωr

is well defined and is dual to path multiplication

Px,yM × Py,xM → Px,xM.
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Chen’s dR Theorem for the Fundamental Group (2/3)

Remarks on Ch(Px,yM ;F )

When x = y, this is augmented by evaluation at the constant loop 1x.

With this augmentation, shuffle product, and coproduct,
Ch(Px,xM ;F ) is a commutative Hopf algebra.

Length of Iterated Integrals and its Filtration

Iterated integrals are naturally filtered by length, hence we can denote the
linear span of the

∫
ω1 · · ·ωr, r ≤ n by LnCh(Px,yM ;F ). With these

filtrations, Ch(Px,yM ;F ) is a filtered Hopf algebra.

Remarks on the filtration

It may appear that iterated integrals are graded by length. However, as

∫
ω1 · · ·ωj−1(df)(ωj) · · ·ωr =

∫
ω1 · · ·ωj−1f(ωj)ωj+1 · · ·ωr −

∫
ω1 · · ·ωj−1(fωj−1)ωj · · ·ωr,

iterated integrals are only filtered by length.
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Chen’s dR Theorem for the Fundamental Group (3/4)

Subspace of iterated integrals that are homotopy functionals

Let H0(Ch(Px,yM ;F )) denote the subspace consisting of those iterated
integrals that are homotopy functionals. It is clearly a subring of
Ch(Px,yM ;F ) as the product of two homotopy functionals is a homotopy
functional. The length filtration restricts to a length filtration L• of
H0(Ch(Px,yM ;F )).

Properties of H0(Ch(Px,yM ;F )

The coproduct and antipode restrict to a coproduct

H0(Ch(Px,zM ;F ))→ H0(Ch(Px,yM ;F ))⊗F H0(Ch(Py,zM ;F )),

and the antipode

H0(Ch(Px,zM ;F ))→ H0(Ch(Px,yM ;F )).

give us that H0(Ch(Px,xM ;F )) is a filtered commutative Hopf
algebra.Justin Scarfy (UBC) Hodge-de Rham III 2015-02-04 18 / 20



Chen’s dR Theorem for the Fundamental Group (4/4)

Integration on H0(Ch(Px,y(M ;F ))

Integration induces a injective mapping∫
: H0(Ch(Px,y(M ;F ))→ Homcts

F (Zπ1(M,x), F ),

since the set of path components of Px,xM is π1(M,x), and as
H0(Ch(Px,yM ;F )) is, by definition, a subset of functions on PM .

One version of Chen’s de Rham Theorem for the fundamental groups

The above homomorphism is surjective, and therefore an isomorphism of
Hopf algebras. Moreover, it is an isomorphism of filtered Hopf algebras.
That is, for each m ≥ 0, integration induces an isomorphism

LmH
0(Ch(Px,yM ;F )) ∼= Homcts

F (Zπ1(M,x)/Jm+1, F ).
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Proof of Chen’s Theorem in a Special Case

Remark

If the manifold M = P1(C), then as it is simply connected, there is
nothing to prove. Hence we remove

The holomorphic 1-forms on U with logarithmic poles on S,
H0(Ω1

P1(logS)) has basis

ωj :=
dz

z − aj
, j = 1, . . . , N.

Denote the set of iterated integrals built up from elements of
H0(Ω1

P1(logS)) by Ch(H0(Ω1
P1(logS))).
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