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Proof of Chen's dR Theorem in a Special Case (1/4)

Recall we stated one version of the Chen's de Rham Theorem for
fundamental groups:
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Proof of Chen's dR Theorem in a Special Case (1/4)

Recall we stated one version of the Chen’'s de Rham Theorem for
fundamental groups:

Theorem (Chen)

The injective homomorphism

/ : HY(Ch(P,,M; F)) — Hom$*(Zm (M, z), F)

is surjective, and therefore an isomorphism of Hopf algebras. Moreover, it
is an isomorphism of filtered Hopf algebras, i.e., for each m > 0,
integration induces an isomorphism

L H(Ch(P,,M; F)) & Hom$(Zm (M, z)/J™ !, F).
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Proof of Chen's dR Theorem in a Special Case (1/4)

Recall we stated one version of the Chen’'s de Rham Theorem for
fundamental groups:

Theorem (Chen)

The injective homomorphism

/ : HY(Ch(P,,M; F)) — Hom$*(Zm (M, z), F)

is surjective, and therefore an isomorphism of Hopf algebras. Moreover, it
is an isomorphism of filtered Hopf algebras, i.e., for each m > 0,
integration induces an isomorphism

L H(Ch(P,,M; F)) & Hom$(Zm (M, z)/J™ !, F).

v

and promised to give a proof to the special case when M is a Zariski open
subset of P1(C), i.e., M =PY(C)\ S, S a finite subset of P!(C).
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Proof of Chen's dR Theorem in a Special Case (2/4)

o If S is empty, M = P!(C) then is simply connected, and there is
nothing to prove.
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Proof of Chen's dR Theorem in a Special Case (2/4)

o If S is empty, M = P!(C) then is simply connected, and there is
nothing to prove.

@ Hence assume S # (). As Aut(P!) acts transitively, we may assume
€S, ie S={ai,...,an,00}, and U :=P(C)\ S.
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Proof of Chen's dR Theorem in a Special Case (2/4)

o If S is empty, M = P!(C) then is simply connected, and there is
nothing to prove.

@ Hence assume S # (). As Aut(P!) acts transitively, we may assume
€S, ie S={ai,...,an,00}, and U :=P(C)\ S.

The holomorphic 1 forms on U with logarithmic poles on S,
HO(Qp,(log S)), has basis

= , jell,....,N}.
wj 2 —a VAR }
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Proof of Chen's dR Theorem in a Special Case (2/4)

o If S is empty, M = P!(C) then is simply connected, and there is
nothing to prove.

@ Hence assume S # (). As Aut(P!) acts transitively, we may assume
€S, ie S={ai,...,an,00}, and U :=P(C)\ S.

The holomorphic 1 forms on U with logarithmic poles on S,
HO(Qp,(log S)), has basis

= , jell,....,N}.
wj 2 —a VAR }

Denote Ch(H°(Q}, (log S))) the set of iterated integrals built up from
elements of H%(Qg, (log S)).
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Proof of Chen's dR Theorem in a Special Case (3/4)

Proposition

For each x € U, the composite

Ch(H’(Qp:(log S))) — H°(Ch(P,,U;C)) — Hom$*(Zm (U, x),C)

is a Hopf algebra isomorphism.
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Proof of Chen's dR Theorem in a Special Case (3/4)

Proposition

For each x € U, the composite
Ch(H’(Qp:(log S))) — H°(Ch(P,,U;C)) — Hom$*(Zm (U, x),C)

is a Hopf algebra isomorphism.

Sketch of Proof.

Define € : A := C[[X1, ..., Xn]] — C, the augmentation map by taking a
power series to its constant term, and hence the augmentation ideal ker e
is the maximal ideal (X1,..., Xxn).
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Proof of Chen's dR Theorem in a Special Case (3/4)

Proposition

For each x € U, the composite
Ch(H’(Qp:(log S))) — H°(Ch(P,,U;C)) — Hom$*(Zm (U, x),C)

is a Hopf algebra isomorphism.

Sketch of Proof.

Define € : A := C[[X1, ..., Xn]] — C, the augmentation map by taking a
power series to its constant term, and hence the augmentation ideal ker e
is the maximal ideal (X1,..., Xxn).

Now view the formal power series

T=1+) / wiX;+) / wjwp X X+ € Ch(H (9, (log S)))[[ X1, - -
J J:k

as an A-valued iterated integral, where the coefficients of the monomial
Xi XZT IS fwil c Wi
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Proof of Chen's dR Theorem in a Special Case (4/4)

Since each coefficient is a homotopy functional, evaluating each coefficient
on a path defines a mapping

7T1(U,IL‘) - Aa s <T7 7>
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Proof of Chen's dR Theorem in a Special Case (4/4)

Since each coefficient is a homotopy functional, evaluating each coefficient
on a path defines a mapping

7T1(U,l‘) - Aa Y= <T7 7>

@ The coproduct property of iterated integrals implies that this is an
homomorphism, and hence it induces a homomorphism

©:Cm(U,z)] — A.
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Proof of Chen's dR Theorem in a Special Case (4/4)

Since each coefficient is a homotopy functional, evaluating each coefficient
on a path defines a mapping

771(U71‘) _)Aa Y= <T7’7>

@ The coproduct property of iterated integrals implies that this is an
homomorphism, and hence it induces a homomorphism
© : Clm (U, z)] — A.

@ The nilpotence property of iterated integrals implies that
O(J™) C I™, i.e., O is continuous, and hence it induces a
homomorphism

—

0 : Clm (U, z)] — A.
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Proof of Chen's dR Theorem in a Special Case (4/4)

Since each coefficient is a homotopy functional, evaluating each coefficient
on a path defines a mapping

7T1(U,l‘) _>A7 Y= <T7’7>

@ The coproduct property of iterated integrals implies that this is an
homomorphism, and hence it induces a homomorphism
© : Clm (U, z)] — A.

@ The nilpotence property of iterated integrals implies that
O(J™) C I™, i.e., O is continuous, and hence it induces a
homomorphism

—

0 : Clm (U, z)] — A.

The mapping O is an isomorphism. l

Justin Scarfy (UBC) Hodge-de Rham IV February 25, 2015 5/ 14




Proof of Chen's dR Theorem in a Special Case (5/4)

Proof: By facts about the group algebra, we see that Clm; (U, x)] is the

quotient of T'(Hy(PY(C)\ S))”. And thus we have a commutative
diagram
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Proof: By facts about the group algebra, we see that Clm; (U, x)] is the

quotient of T'(Hy(PY(C)\ S))”. And thus we have a commutative
diagram
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Proof of Chen's dR Theorem in a Special Case (5/4)

Proof: By facts about the group algebra, we see that Clm; (U, x)] is the

quotient of T'(Hy(PY(C)\ S))”. And thus we have a commutative
diagram

Now you may verify that © o ® induces an isomorphism on I/I2, and
thus © is an isomorphism. This in turn implies that in

Ch(H®(QL: (log 5))) < HO(Ch(P, ,U; C)) — Homg(Z{m (U, z)],C), J

the coefficients of 7' span Hom$™(Z[r1 (U, )], C).
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Proof of Chen's dR Theorem in a Special Case (5/4)

Proof: By facts about the group algebra, we see that C[my (U, z)] is the

quotient of T'(Hy(PY(C)\ S))”. And thus we have a commutative
diagram

Now you may verify that © o ® induces an isomorphism on I/I2, and
thus © is an isomorphism. This in turn implies that in

Ch(H®(QL: (log 5))) < HO(Ch(P, ,U; C)) — Homg(Z{m (U, z)],C), J

the coefficients of 7' span Hom$™(Z[r1 (U, )], C).

You can play the same game on fundamental groupoids for smooth
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Hodge Theory for the Fundamental Group(oid) (1/4)

For A =7Z,Q or R, recall a A-mixed Hodge structure (MHS) H consisted
of an A-module of finite type, with two finite filtrations, an increasing
weight filtration W, on the rational vector space, and a decreasing Hodge
filtration F'® on the complexified vector space that satisfy some intricate
complementary triple filtrations conditions.
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Hodge Theory for the Fundamental Group(oid) (1/4)

For A =7Z,Q or R, recall a A-mixed Hodge structure (MHS) H consisted
of an A-module of finite type, with two finite filtrations, an increasing
weight filtration W, on the rational vector space, and a decreasing Hodge
filtration F'® on the complexified vector space that satisfy some intricate
complementary triple filtrations conditions.

A natural MHTS

We now construct a natural mixed Hodge-Tate structure on

| \

Vz, := Homg (Z[m (U, x)]/J", Z),
where its complexification,
V(C o= HOH]Z(Z[TU(U, l’)]/Jn+17 C)?

is identified with L,, Ch(H°(Q, (log S)) by the isomorphism we just
proved.
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Hodge Theory for the Fundamental Group(oid) (2/4)

@ Define the weight filtration by
Wam Vo := Homgz(Z[m1 (U, )]/ J"T, Q),

and note by Chen’s dR Theorem, the complexified weight filtration is
simply the length filtration:

Wam Ve = Lin Ch(H(Q4: (log S))).
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Hodge Theory for the Fundamental Group(oid) (2/4)

@ Define the weight filtration by
Wam Vo := Homgz(Z[m1 (U, )]/ J"T, Q),

and note by Chen’s dR Theorem, the complexified weight filtration is
simply the length filtration:

Wam Ve = Lin Ch(H(Q4: (log S))).

@ The p" term in the Hodge filtration is defined as the linear span of
iterated integrals in L,, Ch(H(Q}, (log S)) of length > p.
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Hodge Theory for the Fundamental Group(oid) (2/4)

@ Define the weight filtration by
Wam Vo := Homgz(Z[m1 (U, )]/ J"T, Q),

and note by Chen’s dR Theorem, the complexified weight filtration is
simply the length filtration:

Wam Ve = Lin Ch(H(Q4: (log S))).

@ The p" term in the Hodge filtration is defined as the linear span of
iterated integrals in L,, Ch(H(Q}, (log S)) of length > p.

@ The group F™ Ve N Wa,,, Vo consists of those elements of
Ly, Ch(H°(Q, (log S)) of length exactly m.
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Hodge Theory for the Fundamental Group(oid) (2/4)

@ Define the weight filtration by
Wam Vo := Homgz(Z[m1 (U, )]/ J"T, Q),

and note by Chen’s dR Theorem, the complexified weight filtration is
simply the length filtration:

Wam Ve = Lin Ch(H(Q4: (log S))).

@ The p" term in the Hodge filtration is defined as the linear span of
iterated integrals in L,, Ch(H(Q}, (log S)) of length > p.

@ The group F™ Ve N Wa,,, Vo consists of those elements of
Ly, Ch(H°(Q, (log S)) of length exactly m.

Hence these filtrations defined a MHS on V.
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Hodge Theory for the Fundamental Group(oid) (3/4)

In addition, since the 2mt" weight graded quotient
Gy, V = WonV/Wam 2V = @ Q(—m),

it is a Mixed Hodge-Tate structure (MHTS), and complexification the
space of integrated integrals

{/‘*’jl ewy, twy, € HO(Q (log S))} = HY (U; C)®™,

of length exactly m.
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Hodge Theory for the Fundamental Group(oid) (3/4)

In addition, since the 2mt" weight graded quotient
Grhy,V i= Wap V/Wam 2V = @ Q(—m),

it is a Mixed Hodge-Tate structure (MHTS), and complexification the
space of integrated integrals

{/%‘1 e wj,, s wj, € H(Qp(log S))} = HY(U;C)™,

of length exactly m.

Hodge Theory for the Fundamental Groupoid

The same method can be used to define a mixed Hodge-Tate structure on

Ho(Poy(PH(C)\ 8)) /75"

z,y

a fundamental groupoid.
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Preamble to Mixed Tate Motives (1/2)

Philosophy of motives over SpecZ

Motives over SpecZ should arise as invariants (cohomology, homotopy,
etc.) of varieties (and stacks) defined over Z that have good reduction at
every prime number. Obvious examples include the projective spaces IP’JZV
and the moduli stacks of curves M .
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Preamble to Mixed Tate Motives (1/2)

Philosophy of motives over SpecZ

Motives over SpecZ should arise as invariants (cohomology, homotopy,
etc.) of varieties (and stacks) defined over Z that have good reduction at
every prime number. Obvious examples include the projective spaces IP’JZV
and the moduli stacks of curves M .

For now we are interested in the open subsets of the projective line:
Uz =P} \ S :=SpecZ[z, t1,...,tn)/(z —aj)t; —1:j=1,...,N),

with S = {a1,...,an, 00}, as usual, and each a; € Z.
This has good reduction at the prime p if he cardinality of S (mod p)
equals that of S, Now take U = P!\ {0,1,00}. In order to consider the
fundamental group of U, we need a base point x. If we choose
x € Z \ {0,1}, then the pair (U, z) has bad reduction at the prime p
whenever p | z(z — 1) as then the base point reduces to 0 or 1, which are
not in U(F,).
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Preamble to Mixed Tate Motives (2/2)

Necessity of asymptotic base points

This forces us to consider “asymptotic base points.” These are tangent
vectors of IP)% at {0, 1,00} that are non-zero at each prime p, such as

01:=9/8z € TyP* and 10:= —9/0z € TP .
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Preamble to Mixed Tate Motives (2/2)

Necessity of asymptotic base points

This forces us to consider “asymptotic base points.” These are tangent
vectors of IP)% at {0, 1,00} that are non-zero at each prime p, such as

01:=9/8z € TyP* and 10:= —9/0z € TP .

Moreover, the tannakian category of Q-mixed Tate motives over SpecZ
does exist via the works of Voevodsky, Levine and Goncharov. Deligne and
Goncharov have shown that the direct system

0 — Z < Homg(Z[m (U, 2)/J?],Z) < - - — Homg(Z[m (U, z)/J"], Z) < - - - J

of the Homg(Q[r1 (P \ {0,1,00}],01)/J"*1,Q) is a directed system in
this category.
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Preamble to Mixed Tate Motives (2/2)

Necessity of asymptotic base points

This forces us to consider “asymptotic base points.” These are tangent
vectors of IP)% at {0, 1,00} that are non-zero at each prime p, such as

01:=9/8z € TyP* and 10:= —9/0z € TP .

Moreover, the tannakian category of Q-mixed Tate motives over SpecZ
does exist via the works of Voevodsky, Levine and Goncharov. Deligne and
Goncharov have shown that the direct system

0 — Z < Homg(Z[m (U, 2)/J?],Z) < - - — Homg(Z[m (U, z)/J"], Z) < - - - J

of the Homg(Q[r1 (P \ {0,1,00}],01)/J"*1,Q) is a directed system in
this category. We shall exploit the topological and Hodge theoretic aspects
of 71 (P'\ {0,1,00},01) and mo(Pyi (P \ {0,1,00})) in the rest of this
lecture.
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Drinfeld Associator - a premier (1/2)

Now consider the fundamental groupoid P!\ {0, 1,00} with objects the
two tangent vectors 01 € ToP! and 10 € T,P'. This is generated by the

paths [see whiteboard], where o € Pg 4i (P! \ {0,1,00}) and
o1 € P1-071-0(P1 \ {0, 1, OO})
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Drinfeld Associator - a premier (1/2)

Now consider the fundamental groupoid P!\ {0, 1,00} with objects the
two tangent vectors 01 € ToP!' and 10 € T,P'. This is generated by the
paths [see whiteboard], where o € Pg 4i (P! \ {0,1,00}) and
o1 € P1-071-0(]P)1 \ {0, 1, OO})
Set
®(Xo, X1) := O 13([0,1]) = lim tX0T([t, 1 — £))tX* € A.
(Xo, X1) 901,10([07 ) tg%t ([, €

This is known as the Drinfeld associator and was first constructed by V.
Drinfeld.
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Drinfeld Associator - a premier (2/2)

The periods of the limit mixed Hodge-Tate structure on
Q[m1 (P! — {0,1,00},01)7] is precisely MZV¢ := MZV @ itMZV.
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Drinfeld Associator - a premier (2/2)

Theorem

The periods of the limit mixed Hodge-Tate structure on
Q[m1 (P! — {0,1,00},01)7] is precisely MZV¢ := MZV @ itMZV.

Since (P! \ {0,1,00},01) is generated by the paths oo and [0, 1]oy[1,0],

~

@0*170*1(00) — o2mXo  4pd @01,01(01) — o 2miXy

and the fact that the coefficients of ®(Xy, X1) are MZVs. [Blackbox]
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Summary and Future Directions

Recall in the past 4 lectures we learned
© Basics of Hodge theory.
@ Hodge-de Rham Spectral Sequences.
© lterated Integrals and Chen’s de Rham Theorem for the fundamental
group.
@ Hodge theory for the fundamental groupoid.

Future directions:

Multiple zeta values.
Polylogrithms.
Motivic Cohomology.
Mixed Motives.
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