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Proof of Chen’s dR Theorem in a Special Case (1/4)

Recall we stated one version of the Chen’s de Rham Theorem for
fundamental groups:

Theorem (Chen)

The injective homomorphism∫
: H0(Ch(Px,yM ;F ))→ Homcts

F (Zπ1(M,x), F )

is surjective, and therefore an isomorphism of Hopf algebras. Moreover, it
is an isomorphism of filtered Hopf algebras, i.e., for each m ≥ 0,
integration induces an isomorphism

LmH
0(Ch(Px,yM ;F )) ∼= Homcts

F (Zπ1(M,x)/Jm+1, F ).

and promised to give a proof to the special case when M is a Zariski open
subset of P1(C), i.e., M = P1(C) \ S, S a finite subset of P1(C).
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Proof of Chen’s dR Theorem in a Special Case (2/4)

Remark

If S is empty, M = P1(C) then is simply connected, and there is
nothing to prove.

Hence assume S 6= ∅. As Aut(P1) acts transitively, we may assume
∞ ∈ S, i.e, S = {a1, . . . , aN ,∞}, and U := P1(C) \ S.

The holomorphic 1 forms on U with logarithmic poles on S,
H0(Ω1

P1(logS)), has basis

wj :=
dz

z − aj
, j ∈ {1, . . . , N}.

Denote Ch(H0(Ω1
P1(logS))) the set of iterated integrals built up from

elements of H0(Ω1
P1(logS)).
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Proof of Chen’s dR Theorem in a Special Case (3/4)

Proposition

For each x ∈ U , the composite

Ch(H0(Ω1
P1(logS))) ↪→ H0(Ch(Px,xU ;C)) ↪→ Homcts

Z (Zπ1(U, x),C)

is a Hopf algebra isomorphism.

Sketch of Proof.
Define ε : A := C[[X1, . . . , XN ]]→ C, the augmentation map by taking a
power series to its constant term, and hence the augmentation ideal ker ε
is the maximal ideal (X1, . . . , XN ).
Now view the formal power series

T = 1+
∑
j

∫
ωjXj+

∑
j,k

∫
ωjωkXjXK+· · · ∈ Ch(H0(Ω1

P1(logS)))[[X1, . . . , XN ]],

as an A-valued iterated integral, where the coefficients of the monomial
Xi1 . . . Xir is

∫
ωi1 · · ·ωir .
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Proof of Chen’s dR Theorem in a Special Case (4/4)
Since each coefficient is a homotopy functional, evaluating each coefficient
on a path defines a mapping

π1(U, x)→ A, γ 7→ 〈T, γ〉.

The coproduct property of iterated integrals implies that this is an
homomorphism, and hence it induces a homomorphism
Θ : C[π1(U, x)]→ A.

The nilpotence property of iterated integrals implies that
Θ(Jm) ⊆ Im, i.e., Θ is continuous, and hence it induces a
homomorphism

Θ̂ : C[ ̂π1(U, x)]→ A.

Claim

The mapping Θ̂ is an isomorphism.
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Proof of Chen’s dR Theorem in a Special Case (5/4)
Proof: By facts about the group algebra, we see that C[ ̂π1(U, x)] is the
quotient of T (H1(P1(C) \ S))̂. And thus we have a commutative
diagram

T ( ̂H1(U ;C))

C[ ̂π1(U, x)]

Φ
?

Φ̂

- A

Θ̂◦Φ

-

Now you may verify that Θ̂ ◦ Φ induces an isomorphism on I/I2, and
thus Θ̂ is an isomorphism. This in turn implies that in

Ch(H0(Ω1
P1(logS))) ↪→ H0(Ch(Px,xU ;C)) ↪→ Homcts

Z (Z[π1(U, x)],C),

the coefficients of T span Homcts
Z (Z[π1(U, x)],C).

Remark

You can play the same game on fundamental groupoids for smooth
manifolds.
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Hodge Theory for the Fundamental Group(oid) (1/4)

For A = Z,Q or R, recall a A-mixed Hodge structure (MHS) H consisted
of an A-module of finite type, with two finite filtrations, an increasing
weight filtration W• on the rational vector space, and a decreasing Hodge
filtration F • on the complexified vector space that satisfy some intricate
complementary triple filtrations conditions.

A natural MHTS

We now construct a natural mixed Hodge-Tate structure on

VZ := HomZ(Z[π1(U, x)]/Jn+1,Z),

where its complexification,

VC := HomZ(Z[π1(U, x)]/Jn+1,C),

is identified with Ln Ch(H0(Ω1
P1(logS)) by the isomorphism we just

proved.
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Hodge Theory for the Fundamental Group(oid) (2/4)

Define the weight filtration by

W2mVQ := HomZ(Z[π1(U, x)]/Jn+1,Q),

and note by Chen’s dR Theorem, the complexified weight filtration is
simply the length filtration:

W2mVC = Lm Ch(H0(Ω1
P1(logS))).

The pth term in the Hodge filtration is defined as the linear span of
iterated integrals in Ln Ch(H0(Ω1

P1(logS)) of length ≥ p.

The group FmVC ∩W2mVC consists of those elements of
Ln Ch(H0(Ω1

P1(logS)) of length exactly m.

Hence these filtrations defined a MHS on V .
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Hodge Theory for the Fundamental Group(oid) (3/4)
In addition, since the 2mth weight graded quotient

GrW2mV := W2mV/W2m−2V =
⊕

Q(−m),

it is a Mixed Hodge-Tate structure (MHTS), and complexification the
space of integrated integrals

{
∫
ωj1 · · ·ωjm : ωjk ∈ H

0(Ω1
P1(logS))} ∼= H1(U ;C)⊗m,

of length exactly m.

Hodge Theory for the Fundamental Groupoid

The same method can be used to define a mixed Hodge-Tate structure on

H0(Px,y(P1(C) \ S))/Jn+1
x,y ,

a fundamental groupoid.
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Preamble to Mixed Tate Motives (1/2)

Philosophy of motives over SpecZ
Motives over SpecZ should arise as invariants (cohomology, homotopy,
etc.) of varieties (and stacks) defined over Z that have good reduction at
every prime number. Obvious examples include the projective spaces PNZ
and the moduli stacks of curves Mg,n.

For now we are interested in the open subsets of the projective line:

UZ = P1
Z \ S := SpecZ[z, t1, . . . , tN ]/(z − aj)tj − 1 : j = 1, . . . , N),

with S = {a1, . . . , aN ,∞}, as usual, and each aj ∈ Z.
This has good reduction at the prime p if he cardinality of S (mod p)
equals that of S, Now take U = P1 \ {0, 1,∞}. In order to consider the
fundamental group of U , we need a base point x. If we choose
x ∈ Z \ {0, 1}, then the pair (U, x) has bad reduction at the prime p
whenever p | x(x− 1) as then the base point reduces to 0 or 1, which are
not in U(Fp).
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Preamble to Mixed Tate Motives (2/2)

Necessity of asymptotic base points

This forces us to consider “asymptotic base points.” These are tangent
vectors of P1

Z at {0, 1,∞} that are non-zero at each prime p, such as

~01 := ∂/∂z ∈ T0P1 and ~10 := −∂/∂z ∈ T1P1.

Moreover, the tannakian category of Q-mixed Tate motives over SpecZ
does exist via the works of Voevodsky, Levine and Goncharov. Deligne and
Goncharov have shown that the direct system

0 ↪→ Z ↪→ HomZ(Z[π1(U, x)/J2],Z) ↪→ · · · ↪→ HomZ(Z[π1(U, x)/Jn],Z) ↪→ · · ·

of the HomQ(Q[π1(P1 \ {0, 1,∞}], ~01)/Jn+1,Q) is a directed system in
this category. We shall exploit the topological and Hodge theoretic aspects
of π1(P1 \ {0, 1,∞}, ~01) and π0(P ~01, ~10(P1 \ {0, 1,∞})) in the rest of this
lecture.
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this category. We shall exploit the topological and Hodge theoretic aspects
of π1(P1 \ {0, 1,∞}, ~01) and π0(P ~01, ~10(P1 \ {0, 1,∞})) in the rest of this
lecture.
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Drinfeld Associator - a premier (1/2)

Now consider the fundamental groupoid P1 \ {0, 1,∞} with objects the
two tangent vectors ~01 ∈ T0P1 and ~10 ∈ T1P1. This is generated by the
paths [see whiteboard], where σ0 ∈ P ~01, ~01(P1 \ {0, 1,∞}) and

σ1 ∈ P ~10, ~10(P1 \ {0, 1,∞})

Set
Φ(X0, X1) := Θ̂ ~01, ~10([0, 1]) = lim

t→0
tX0T ([t, 1− t])tX1 ∈ A.

This is known as the Drinfeld associator and was first constructed by V.
Drinfeld.
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Drinfeld Associator - a premier (2/2)

Theorem

The periods of the limit mixed Hodge-Tate structure on
Q[π1(P1 − {0, 1,∞}, ~01)̂] is precisely MZVC := MZV⊕ iπMZV.

Proof

Since π1(P1 \ {0, 1,∞}, ~01) is generated by the paths σ0 and [0, 1]σ1[1, 0],

Θ̂ ~01, ~01(σ0) = e2πiX0 and Θ̂ ~01, ~01(σ1) = e−2πiX1

and the fact that the coefficients of Φ(X0, X1) are MZVs. [Blackbox]
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Summary and Future Directions

Recall in the past 4 lectures we learned

1 Basics of Hodge theory.

2 Hodge-de Rham Spectral Sequences.

3 Iterated Integrals and Chen’s de Rham Theorem for the fundamental
group.

4 Hodge theory for the fundamental groupoid.

Future directions:

Multiple zeta values.

Polylogrithms.

Motivic Cohomology.

Mixed Motives.
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