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Outline

Introduction

Although the title of this seminar is “local trace formula”, i.e., a local
analogue of the Arthur-Selberg TF that describes the character of the
representation of G(F ) on the discrete part of L2(G(F )), for G a
reductive algebraic group over a local field F , we need to spell out the
Arthur-Selberg TF for global fields (or the rings of Adèles for a global
field), to appreciate the major innovations in the establishment of the local
trace formula.

Plan for this lecture

We begin by carefully proving the Selberg TF (1956), an expression for the
character of the unitary representation of G on the space L2(Γ \G) of
square-integrable functions, where G is a Lie group and Γ a cofinite
discrete group, i.e. the character is given by the trace of certain functions
on G, followed a few examples, then say a bit about its generalization,
Arthur-Selberg TF.
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Selberg TF for Γ cocompact (1956)

Notations

H denotes a locally compact group, Γ a discrete cocompact
subgroup, i.e., Γ \ H is compact.

L2(Γ \ H) is thus well defined with a action H.

C∞c (H) denotes the set of smooth, compactly supported functions on
H, it makes sense thanks to Borel measures.

Since H is locally compact, with Γ cocompact, there is a Haar
measure which is both left and right invariant, i.e. H is unimodular

Right regular representation operator R

For f ∈ C∞c (H), ϕ ∈ L2(Γ \ H), define a right regular representation
operator R:

(R(f)ϕ)(x) =

∫
H
ϕ(xy)f(y) dy.
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The Kernel Kf(x, y)

Obtain Kf (x, y)

(R(f)ϕ)(x) =

∫
H
ϕ(xy)f(y) dy

=

∫
H
ϕ(y)f(x−1y) dy

=

∫
Γ\H

∑
γ∈Γ

f(x−1γy)

ϕ(y) dy

: =

∫
Γ\H

Kf (x, y)ϕ(y) dy

Since f is compactly supported, the sum is locally finite, and∫
Γ\H

∫
Γ\H
|Kf (x, y)| dx dx <∞
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Facts from operator theory

Kf ∈ L2(Γ \ H × Γ \ H), a Hilbert-Schmidt space.

Recall from operator theory, the following relations among Hilbert spaces:{
bounded

operators

}
⊃
{

compact
operators

}
⊃
{

Hilbert-Schmidt
operators

}
⊃
{

trace class
operators

}
For every f ∈ C∞c (H), R(f) is Hilbert-Schmidt, thus a compact operator.

Let (R,H ) be a pair consisting of a unitary representation of H and a
Hilbert space, such that R(f) is compact for all f ∈ C∞c (H), then

H =
⊕̂

Hπ, where Hπ = Vπ ⊗Mπ,

where (π, Vπ) is an irreducible unitary representation and Mπ an vector
space with H-action, and dimMπ = mπ <∞. Remark: since R compact,
the decomposition is discrete with finite multiplicity mπ.
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Spectral side of the Selberg TF (1/2)

Corollary to the above

L2(Γ \ H) =
⊕̂

(Vπ ⊗Mπ)

discrete sum of irreducible representations, thus it only has a discrete
spectrum.

Any f ∈ C∞c (H) if of the form

f =
∑
i finite

hi ∗ gi, for hi, gi ∈ C∞c (H).

Now we can factorize R as

R(f) =
∑
i finite

R(hi)R(gi),

since both R(hi) and R(gi) are Hilbert-Schmidt, their product is trace
class and hence R(f), a finite sum of trace class operators is trace class.
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Spectral side of the Selberg TF (2/2)

Spectral side of Selberg TF

trR(f) =
∑
π∈Ĥ

mΓ(π)trπ(f),

where Ĥ the dual of H, i.e., the set of equivalence classes of irreducible
representations of H in this case.

a word about π(f)

for a representation (π, Vπ) of H, Vπ is a Hilbert space, for v ∈ Vπ and
x ∈ H,

π(f) :=

∫
f(x)π(x) dx.
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Geometric side of the Selberg TF (1/2)

Exercise

Assume that a kernel K(x, y) on X ×X is

1 continuous in x, y,

2 represents a trace class operator,

then

trR(f) =

∫
X
K(x, x) dx.

If you are too lazy to do the above...

If

K(x, y) =

∫
X
K1(x, z)K2(z, y) dz

with Ki, i = 1, 2 Hilbert-Schimdt. Then

trK =

∫
X
K(x, x) dx =

∫
X

∫
X
K1(x, z)K2(z, x) dz dx = 〈K1,K

∗
2 〉L2(K1,K2).
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Geometric side of the Selberg TF (2/2)

tr(R(f)) =

∫
Γ\H

K(x, x) dx

=

∫
Γ\H

∑
γ∈Γ

f(x−1γx) dx

=

∫
F

∑
γ∈{Γ}

∑
ξ∈Γγ\Γ

f(x−1ξ−1γξx) dx

=
∑
γ∈{Γ}

∫
F

∑
ξ∈Γγ\Γ

f(x−1ξ−1γξx) dx

=
∑
γ∈{Γ}

∫
Γγ\H

f(x−1γx) dx

=
∑
γ∈{Γ}

vol(Γγ \ Hγ)

∫
Hγ\H

f(x−1γx) dx
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The Selberg TF and (familiar) examples

Selberg TF for Γ cocompact

For f ∈ C∞c (H),∑
mΓ(π)trπ(f) =

∑
γ∈{Γ}

vol(Γγ \ Hγ)

∫
Hγ\H

f(x−1γx) dx

(Familiar) examples

1 Γ = {1},H compact, then the Selberg TF reads∑
m(π)trπ(f) = f(1),

with m(π) = dimπ, i.e., it is just the usual Plancherel formula.

2 Γ cocompact, H abelian, then the Selberg TF is just the Poisson
summation formula (spell it out yourself!).
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When H = SL(2,R)

The best known discrete subgroup of H = SL(2,R) is the group
Γ = SL(2,Z) of unimodular integral matrices. However, the quotient
Γ \ H is noncompact; nevertheless, Selberg was able to extend his TF to
this case by considering the Riemann surface

X = Γ \ H/K,

which becomes a double cosets, where K = SO(2,R) is a compact
orthogonal group, the stabilizer of i under the transitive action of SL(2,R)
the upper half plane by linear fractional transformations. Selberg then
analytically continued Eisenstein Series E(z, s) in order to handle the
continuous spectrum of L2(Γ \ H), and derived a formula for the trace of
R(f) in the space of cusp forms

Truncation and modified kernels

The main tools used to handle general noncompact quotient are
truncation and modified kernel, due to Arthur.

Justin Scarfy (UBC) Arthur-Selberg Trace Formula March 03, 2015 11 / 24



When H = SL(2,R)

The best known discrete subgroup of H = SL(2,R) is the group
Γ = SL(2,Z) of unimodular integral matrices. However, the quotient
Γ \ H is noncompact; nevertheless, Selberg was able to extend his TF to
this case by considering the Riemann surface

X = Γ \ H/K,

which becomes a double cosets, where K = SO(2,R) is a compact
orthogonal group, the stabilizer of i under the transitive action of SL(2,R)
the upper half plane by linear fractional transformations. Selberg then
analytically continued Eisenstein Series E(z, s) in order to handle the
continuous spectrum of L2(Γ \ H), and derived a formula for the trace of
R(f) in the space of cusp forms

Truncation and modified kernels

The main tools used to handle general noncompact quotient are
truncation and modified kernel, due to Arthur.

Justin Scarfy (UBC) Arthur-Selberg Trace Formula March 03, 2015 11 / 24



Adèles and Strong Approximation

Adèles

Recall for a global field F , the ring of adéles AF , is the restricted direct
product of the completions Fv w.r.t. the rings of integers Ov:

AF :=

{
(xv) ∈

∏
v

Fv : xv ∈ Ov, for all but finitely places v

}
.

Example: When F = Q,

AQ := {(x∞, x2, x3, . . .} : xv ∈ Qv(∀v ≤ ∞), xp ∈ Zp,
(for all but finitely many p)}.

Fundamental domain

Let a group G act on a set X (on the left). A fundamental domain for
this action is a subset D ⊆ X satisfying:
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Adèles and Strong Approximation

1 For each x ∈ X, there exists d ∈ D and g ∈ G such that gx = d.

2 The choice of d above is unique

Strong approximation for adeles

Let v0 be any normalized nontrivial valuation of the global field F . Let
AF,v0 be the restricted topological product of the Fv with respect to the
Ov, where v runs through all normalized valuations v 6= v0. Then F is
dense in AF,v0 .

Proof: see [Cassels-Frohlich]

Strong approximation for algebraic groups over F

The strong approximation theorem is an extension of the Chinese
Remainder Theorem to algebraic groups over global fields F :
Let G be a linear algebraic group over a global field F . If S is a non-empty
finite set of places of F , then we write AS for the ring of S-adeles, thus
A = AS × AS . For any choice of S, G(F ) embeds in G(AS) and G(AS).
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Strong approximation for algebraic groups over F

The strong approximation theorem is an extension of the Chinese
Remainder Theorem to algebraic groups over global fields F :
Let G be a linear algebraic group over a global field F . If S is a non-empty
finite set of places of F , then we write AS for the ring of S-adeles, thus
A = AS × AS . For any choice of S, G(F ) embeds in G(AS) and G(AS).
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A Simple Example
With strong approximation, we are thus able to consider G(F ) \G(AF ),
where G(F ) is discrete in G(AF ), thus we can try use the Selberg TF, but
the quotient is noncompact in general :(.

Baby example of G(F ) \G(AF ) being noncompact

Take G = GL(1), F = Q, then

G(F ) \G(AF ) = Q×A×Q = R×>0 noncompact

When G is the multiplicative group of a quaternion algebra D over Q
Take G = GL(1), then G(Q) = Q×, G(AQ) = A×, the group of ideles.
The restriction of the norm mapping N to G is a generator of the group
X(G)Q, and

G(A)1 := {x ∈ G(A) : |N(x)| = 1}, the norm 1 elements in D×.

Now the quotient G(Q) \G(A)1 is compact, since G has no proper
parabolic subgroup over Q, thus we are able to use the Selberg TF.
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Example: Jacquet-Langlands correspondence

Langlands developed a theory of Eisenstein series valid for any reductive
group G, and used it to describe the continuous spectrum of
L2(G(F ) \G(A)), and formed the Langlands program, as a typical
example in this program:

Let H = G′(AF )/AG′ , D be a division quaternion algebra over a number
field F and G′ = D×. Then to each automorphic cuspidal representation
σ of G′ (i.e., an irreducible G′(A)-submodule of L2(Z(A)G′(F ) \G′(A))
of dimension greater than one) there exists a corresponding automorphic
cuspidal representation π = π(σ) of G(A) = GL2(A) (an irreducible
G(A)-submodule of the space of cusp forms L2

0(Z(A)G(F ) \G(A)) with
the property that for each place v in F unramified for D (i.e. where
G′(Fv) ∼= GL2(Fv)), σv ∼= πv. Z(D×) ∼= Z(GL2)

If you are not comfortable with adeles over global fields, take F = Q, then
the places v are either ∞ or a finite prime p.
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Noncompact quotient and parabolic subgroups (1/3)

Difficulties with noncompact quotient

When Γ \G is non-compact,

1 Although R(f) is still an integral operator, with kernel

Kf (x, y) =
∑
γ

f(x−1γy)

no longer integrable over the diagonal.

2 The regular representation R(g) no longer decomposes discretely,
Eisenstein series are required to describe the continuous spectrum,
and R(f) is of course no longer of trace class.

Arthur’s contribution

Arthur derives a form of TF, that still relates geometric and spectral
distributions attached to G, by truncating and modifying the kernel.
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Noncompact quotient and parabolic subgroups (2/3)

For

JTo (f) =

∫
Z(A)G(F )\G(A)

KT
o (x, x) dx,

with KT
o a modification of the kernel,

Ko(x, x) =
∑
γ∈o

f(x−1γx),

which can be integrated over the diagonal.

Example with G = GL(2) (for necessity of truncation and modified
kernel)

We have o the hyperbolic conjugacy class

o =

{
δ−1

(
α 0
0 1

)
: δ ∈M(F ) \G(F )

}
with M =

{(
a 0
0 b

)}
.
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Noncompact quotient and parabolic subgroups (3/3)

Jo(f) : =

∫
Z(AF )G(F )\G(A)

Ko(x, x) dx

= · · ·

= m(Z(AF )M(F ) \M(AF ))Ff

((
α 0
0 1

))
,

but it is infinite as m(Z(AF )M(F ) \M(AF )) = m(F× \ A×F ) =∞.

A word on the spectral side

L2(Z(AF )G(F ) \G(AF ) =
∑
χ∈X

L2
χ,

with each L2
χ a G(AF )-invariant submodule indexed by certain cuspidal

data X = {(M,σ)}, where M is a Levi subgroup of a parabolic P ⊂ G,
and σ is a cuspidal automorphic representation of M(AF ).
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Arthur’s modified kernels: The geometric terms (1/2)
For f ∈ C∞c (Z(AF ) \G(AF )), set

Ko(x, y) =
∑
γ∈o

f(x−1γy)

and let O denote the collection of all such classes o in Z(A) \G(A).
Note: for o an elliptic class, (i.e. if γ ∈ o is not conjugate in G(F ) to an
element of any proper parabolic subgroup P (F )), the kernel Ko(x, y) is
integrable over the diagonal subset Z(AF )G(F ) \G(AF ).

For P = B, the Borel subgroup, let τ̂B denote the characteristic function
of the positive Weyl chamber

a+
B := {(r1, r2) ∈ aB = aN}

For any T = (T1, T2) ∈ a+
B,

kTo (x, f) = Ko(x, x)−
∑

δ(B(F )\G(F )

KB,o(δx, δx)τ̂B(H(δx)− T ),
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Arthur’s modified kernels: The geometric terms (2/2)

where

KB,o(x, y) =
∑

δ∈o∩Z(F )\M(F )

∫
N(AF )

f(x−1γny) dn.

Observe that
kTo (x, f) = Ko(x, x),

for x in a compact (modulo Z(A)) set Ω (how large depends on T ). I. e.,
for x in an appropriate such set Ω, τ̂B(H(δx)− T ) is identically zero.

Integrability condition for kTo (k, f), with G = GL(2) in mind

-For any o ∈ O, kTo (x, f) is absolutely integrable over Z(A)G(F ) \G(A).
-For α(T ) sufficiently large,∑

o∈O

∫
Z(A)G(F )\G(A)

|kTo (x, f)| dx <∞.

Justin Scarfy (UBC) Arthur-Selberg Trace Formula March 03, 2015 20 / 24



Arthur’s modified kernels: The spectral terms (1/2)

Spectral expansion of the kernel

Recall the spectral expansion of the kernel

Kf (x, y) =
∑
χ∈X

Kχ(x, y).

Truncation operator on G(F ) \G(AF )

Given T ∈ a+ as before, the truncation of a continuous function ϕ(x) on
Z(A)G(F ) \G(A) is the function

ΛTϕ(x) = ϕ(x)−
∑

δ∈B(F )\G(F )

ϕN (δx)τ̂B(H(δx)− T )),

where ϕN (δx) =

∫
N(F )\N(A)

ϕ(nx) dx the constant term of ϕ.
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Arthur’s modified kernels: The spectral terms (2/2)

Modified spectral kernel

With identity ∑
o∈O

KP,o(x, y) =
∑
χ∈X

KP,χ(x, y),

Arthur defines the modified spectral kernel functions

kTo (x, f) =
∑
P⊂G

(−1)dimAp/AG
∑

δ∈P (F )\G(F )

KP,χ(δx, δx)τ̂P (HP (δx)− T ),

For G = GL(2)

kTχ (x, f) = Kχ(x, x)−
∑

δ∈B(F )\G(F )

KB,χ(δx, δx)τ̂B(HB(δ(δx)− T ).

Because of the above identity, the modification of the geometric
expression for the kernel of R(f) is equal to the modification of the
spectral expression for this kernel.
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Arthur-Selberg Trace Formula

Arthur Trace Formula

With

JTo =

∫
Z(A)G(F )\G(A)

kTo (x, f) dx and JTχ =

∫
kTχ (x, f) dx,

Arthur proved ∑
o∈O

JTo (f) =
∑
χ∈X

JTχ (f).

Trace formula explicitly

∑
M

1
|W (M)|

∫
π(M,V )

aM (π)IM (π, f) dπ =
∑
M

1
|W (M)|

∑
γ∈Γ(M,V )

aM (γ)IM (γ, f)
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Recap and Future topics

Review

Today we discussed

1 a proof of Selberg TF.

2 (and reviewed) the ring of adeles and strong approximation for
algebraic groups over a global field F .

3 a few nice applications of the TF.

4 the difficulties for obtaining a TF over noncompact quotients.

5 the statement of Arthur TF, with G = GL(2) as an example in mind.

Possible future topics

1 a careful dissuasion on roots and weights.

2 Eisenstein series for the necessary proofs.

3 orbital integrals and a detailed proof of Arthur TF.

4 Shalika germs (in local TF).
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