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Motivation

Introduction

Homological algebra originated from the nineteenth century in the works
of Riemann (1857) and Betti (1857) on “homology numbers” in topology,
went under rigorous developments by Poincaré, Noether, Leray, and was
finally crystallized by the book of Cartan and Eilenberg to arbitrary
algebraic systems.

Group cohomology was classically studied long before
the notation was formulated in 1943-45 in other guises, e.g.,
H0(G,A) = AG, H1(G,Z) = G/[G,G], and Galois cohomology was
coined by Hochschild for the group cohomology of the Galois group
G = Gal(K/k) for a (possibly infinite) Galois extension K of k, where it is
applied by Hochschild and Tate to class field theory.

Plan for this lecture

Define group cohomology from two constructions: cochain complex
and resolutions/functors, discuss change of the group.

A first taste of Galois cohomology via Hilbert 90.
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G-modules

Definition

Let G denote a multiplicatively written finite topological group with unit
element 1G, a G-modules A is an (additive written) abelian group A on
which the group G acts in a way such that for all σ, τ ∈ G, a, b ∈ A,

1 1Ga = a,

2 σ(a+ b) = σa+ σb,

3 (στ)a = σ(τ(a)).

The Group Ring

We can interpret G-modules as modules over the group ring

Z[G] :=
{∑

σ∈G
nσσ | nσ ∈ Z

}
,

containing the augmentation ideal and the ideal of norms of Z[G]:

IG :=
{∑

σ∈G
nσσ |

∑
σ∈G

= 0
}
, Z ·NG :=

{
n ·

∑
σ∈G

σ | n ∈ Z
}
.

Justin Scarfy (UBC) Group Cohomology October 05, 2015 3 / 24



G-modules

Definition

Let G denote a multiplicatively written finite topological group with unit
element 1G, a G-modules A is an (additive written) abelian group A on
which the group G acts in a way such that for all σ, τ ∈ G, a, b ∈ A,

1 1Ga = a,

2 σ(a+ b) = σa+ σb,

3 (στ)a = σ(τ(a)).

The Group Ring

We can interpret G-modules as modules over the group ring

Z[G] :=
{∑

σ∈G
nσσ | nσ ∈ Z

}
,

containing the augmentation ideal and the ideal of norms of Z[G]:

IG :=
{∑

σ∈G
nσσ |

∑
σ∈G

= 0
}
, Z ·NG :=

{
n ·

∑
σ∈G

σ | n ∈ Z
}
.

Justin Scarfy (UBC) Group Cohomology October 05, 2015 3 / 24



Group Cohomology via Cochain Complex (1/7)

The cohomology of a group G arises from the diagram

· · · G×G×G⇒ G×G→ G,

with the arrows being the projections

di : G
n+1 → Gn, i = 0, 1, . . . ,

di(σ0, . . . , σn) = (σ0, . . . , σ̂i, . . . , σn),

where σ̂i indicates that the ith entry is omitted from the (n+ 1)-tuple,
and G acts on Gn by left multiplication.

Assuming all G-modules A to be discrete from now on, we form the
abelian group

Xn = Xn(G,A) = Map(Gn+1, A)

of all continuous maps x : Gn+1 → A, i.e., of all continuous functions with
values in A.
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Group Cohomology via Cochain Complex (2/7)

G-homomorphims

Xn is in a natural way a G-module by

(σx)(σ0, . . . , σn) = σx(σ−1σ0, . . . , σ
−1σn).

The maps di : G
n+1 → Gn induce G-homomorphisms d∗i : X

n−1 → Xn

and we form the alternating sum

∂n =
n∑
i=0

(−1)d∗i : Xn−1 → Xn,

(∂nx)(σ0, . . . , σn) =
n∑
i=0

(−1)ix(σ0, . . . , σ̂i, . . . , σn).

Moreover, the G-homomorphism ∂0 : A→ X0, which associates each
a ∈ A the constant function x(σ0) = a.
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Group Cohomology via Cochain Complex (3/7)

Enters homological algebra

The sequence

0→ A
∂0−→ X0 ∂1−→ X1 ∂2−→ X2 → · · · (∗)

is a cochain complex, i.e., ∂n∂n−1 = 0, and is exact. If we consider the
homomorphisms of Z-modules (NOT of G-modules):

D−1 : X0 → A, D−1x = x(1G)

Dn : Xn+1 → Xn, (Dnx)(σ0, . . . , σn) = x(1G, σ0, . . . , σn).

Calculation reveals that for n ≥ 0,

Dn ◦ ∂n+1 + ∂n ◦Dn−1 = id . (∗∗)

The exact sequence of G-modules (∗) called the standard resolution of
A, and a family (Dn)n≥−1 with the property (∗∗) is called a contracting
homotopy of it.
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Group Cohomology via Cochain Complex (4/7)

Homogenous Cochain Complex

Now apply the functor “fixed module”: for n ≥ 0,

Cn(G,A) = Xn(G,A)G,

i.e., Cn(G,A) consists of the continuous functions x : Gn+1 → A such
that

x(σσ0, . . . , σσn) = σx(σ0, . . . , σn)

for all σ ∈ G.

These functions x are called the homogeneous n-cochain of
G with coefficients in A. From the standard resolution (∗) we obtain a
sequence

C0(G,A)
∂1−→ C1(G,A)

∂2−→ C2(G,A)→ · · · , (∗ ∗ ∗)

which is in general NO LONGER exact, but nevertheless is still a complex,
which is called the homogeneous cochain complex of G with
coefficients in A.
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Group Cohomology via Cochain Complex (5/7)

Homogeneous Cocycles, Coboundaries

We set

Zn(G,A) := ker(Cn(G,A)
∂n+1

−−−→ Cn+1(G,A)),

Bn(G,A) := im(Cn−1(G,A)
∂n−→ Cn(G,A),

and B0(G,A) := 0. The elements of Zn(G,A) and Bn(G,A) are called
the homogeneous n-cocycles and n-coboundaries, where since
∂n∂n−1 = 0, we have Bn(G,A) ⊆ Zn(G,A) as subgroups.

The Cohomology Group

For n ≥ 0, the factor group

Hn(G,A) := Zn(G,A)/Bn(G,A)

is called the n-dimensional cohomology group of G with coefficients in A.
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Group Cohomology via Cochain Complex (6/7)
For computational purposes and many applications, we modify definition
of group cohomology by reducing the number of variables in the
homogeneous cochains by one:

Inhomogeneous Cochains, Cocycles, Coboundaries

Let C 0(G,A) = A and for n ≥ 1, C n(G,A) := Xn−1(G,A) be the
abelian group of all continuous functions y : Gn → A; thus we have the
isomorphism

C0(G,A)→ C 0(G,A), x(σ) 7→ x(1),

and for n ≥ 1 the isomorphisms

Cn(G,A)→ G n(G,A),

x(σ0, . . . , σn) 7→ y(σ1, . . . , xn) = x(1, σ1, σ1σ2, . . . , σ1σ2 · · ·σn),

whose inverses are given by

y(σ1, . . . , σn) 7→ x(σ0, σ1, . . . , σn) = σ0y(σ
−1
0 σ1, σ

−1
1 σ2 . . . , y(σ

−1
n−1σn).
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Group Cohomology via Cochain Complex (7/7)

With these isomorphisms the coboundary operators
∂n+1 : Cn(G,A)→ Cn+1(G,A) are transformed into homomorphisms
∂n+1 : C n(G,A)→ C n+1(G,A) given by (for a ∈ C 0(G,A),C 1(G,A),
and C n(G,A), respectively):

(∂1a)(σ) = σa− a,
(∂2y)(σ, τ) = σy(τ)− y(στ) + y(σ),

(∂n+1y)(σ1, . . . , σn+1) = σ1y(σ2, . . . , σn+1) +
∑n

i=1
(−1)i×

×y(σ1, . . . , σi−1,σiσi+1, σ2, . . . , σn+1) + (−1)n+1y(σ1, . . . , σn).

Setting

Z n(G,A) = ker(C n(G,A)
∂n+1

−−−→ C n+1(G,A))

Bn(G,A) = im(C n(G,A)
∂n−→ C n(G,A)),

the isomorphism Cn(G,A)
∼−→ C n(G,A) induces

Hn(G,A) ∼= Z n(G,A)/Bn(G,A).
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Explicit Familiar (and Unfamiliar) Examples (1/3)
Having just defined group cohomology, we interpret Hn(G,A) for
n = 0, 1, 2 in (hopefully) familiar languages:

H0(G,A)

We have a natural isomorphism C0(G,A)→ A given by x 7→ x(1G).
Thus, for a ∈ A, (∂1a)(σ0, σ1) = σ0a− σ1a, so that

H0(G,A) = AG.

H1(G,A)

A map ϕ : G→M is a crossed homomorphism if

ϕ(στ) = σϕ(τ) + ϕ(σ), for all σ, τ ∈ G.

Thus, as ϕ(1G) = ϕ(1G · 1G) = 1Gϕ(1G) + ϕ(1G) = 2ϕ(1G), we arrive at
ϕ(1G) = 0. For every a ∈ A, the map σ 7→ σa− a is a crossed
homomorphism, called a principal crossed homomorphism.
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Explicit Familiar (and Unfamiliar) Examples (2/3)

[ctd] H1(G,A)

By definition,

H1(G,A) :=
ker(∂n+1)

im(∂n)
=
{crossed homomorphisms G→ A}
{principal crossed homomorphisms}

.

H2(G,A)

The inhomogeneous 2-cocycles are the continuous functions
x : G×G→ A such that ∂2x = 0, i.e.,

x(στ, ρ) + x(σ, τ) = x(σ, τρ) + σx(τ, ρ),

and among those are the inhomogeneous 2-coboundaries

x(σ, τ) = y(σ)− y(στ) + σy(τ)

where y is an arbitrary 1-cochain G→ A.
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Explicit Familiar (and Unfamiliar) Examples (3/3)

The 2-cocycles had been known long before the developments of group
cohomology as factor systems, which occurred in connection with group
extension:

Assuming either A or G is finite, how many groups Ĝ is there,
which have the G-module A as a normal subgroup and G as the quotient
group – consider all exact sequences

1→ A→ Ĝ→ G→ 1
of topological groups (i.e., of profinite groups if A is finite, and of discrete
groups if G is finite), such that the action of G on A is given by
σa = σ̂aσ̂−1, where σ̂ ∈ Ĝ is a pre-image of σ ∈ G. If there is another
sequence with Ĝ replaced by Ĝ′ in the above, such that there is a
topological isomorphism f : Ĝ→ Ĝ′, we call these sequences equivalent,
and denote the set of equivalence classes [Ĝ′] by EXT(G,A), which has a
distinguished element given by the semi-direct product Ĝ = AoG.

Theorem (Schereier) [NSW 1.2.4]

We have a canonical bijection of pointed sets H2(G,A) ∼= EXT(G,A).
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sequence with Ĝ replaced by Ĝ′ in the above, such that there is a
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Group Cohomology via Resolutions (1/3)

Injective G-modules

A G-module I is said to be injective if every G-homomorphism from a
submodule of a G-module extends to the whole module, or, equivalently, if
HomG(−, I) is an exact functor.

Diagrammatically, if X and Y are
G-modules and f : X → Y is a injective module homomorphism (hence X
can be viewed as a submodule of Y ) and g : X → I an arbitrary
G-homomorphism, then there exists a G-homomorphism h : Y → I such
that hf = g:

0 - X
f- Y

I

g

?
h

�...
....

....
....

....

Fact: The category of G-modules, ModG has enough injectives, i.e.,
every G-module M can be embedded into an injective G-module, M ↪→ I.
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Group Cohomology via Resolutions (2/3)
For a G-module M , define

MG := {m ∈M | gm ∈ m for all g ∈ G}.

The functor

ModG → Ab given by M 7→MG

is left exact, i.e., if
0→M ′ →M →M ′′ → 0

is exact, then (the arrow coming into the sequence is preserved and hence)

0→M ′G →MG →M ′′G

is exact, and since ModG has enough injectives, we apply right derived
functors and choose an injective resolution
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Group Cohomology via Resolutions (3/3)

0→M → I0
d0−→ I1

d1−→ I2
d2−→ I3 → · · ·

of M . After applying the “fixed module” functor again, the complex

0
d−1

−−→ (I0)G
d0−→ (I1)G

d1−→ (I2)G
d2−→ (I3)G → · · ·

need no longer be exact.

We define the n-th cohomology group of G with coefficients in M to be

Hn(G,M) := ker(dr)/im(dr−1).

Note that we again recover H0(G,M) =MG, as

0→MG → (I0)G
d0−→ (I1)G

is exact, and H0(G,M) := ker(d0)/ im(d−1) = ker(d0).
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Group Homology (1/2)
For a G-module M , let MG be the largest quotient of M on which G acts
trivially: MG :=M/〈{gm−m | g ∈ G, m ∈M}〉.

Projective Resolutions

Note that MG is the dual notion to MG, which is the largest subobject of
M on which G acts trivially. The definition of the cohomology groups
dualizes to give us homology groups: Let M be a G-module, and choose a
projective resolution

· · · → P2
d2−→ P1

d1−→ P0
d0−→M → 0

of M . Applying the “largest quotient functor” to yield the complex

· · · → (P2)G
d2−→ (P1)G

d1−→ (P0)→ 0

which no longer needs to be exact.

Hn(G,M) := ker(dn)/ im(dn+1).
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Group Homology (2/2)

H0(G,M)

The zeroth homological group H0(G,M) =MG, as
(P1)G → (P0)G →MG → 0 is exact.

H1(G,Z)
Consider the exact augmentation sequence

0→ IG → Z[G]→ Z→ 0,
where Z[G] is a projective G module, i.e., H1(G,Z[G]) = 0, hence

0→ H1(G,Z)→ IG/I
2
G → Z[G]/IG → Z→ 0,

where the middle map is induced by the inclusion IG ↪→ Z[G], and so is
zero. Thus the above sequence shows

H1(G,Z)
∼=−→ IG/I

2
G.

Combining this and the fact that there is an isomorphism
Gab := G/[G,G] ∼= IG/I

2
G yields the canonical isomorphism

H1(G,Z) ∼= Gab.
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Change of the Group G (1/3)
Next we consider the question of what happens to the cohomology group
Hn(G,A) if we change the group G, and we only discuss three special
cases of homomorphisms Hn(G,A)→ Hn(G′, A′) with “compatible
pairs” G′ → G,A→ A′, and an additional case:

Conjugation

Let H ⊆ G be a closed subgroup, A a G-module, B an H-submodule of
A. For σ, τ ∈ G, we write τσ = σ−1τσ and σH = σHσ−1, then the two
compatible homomorphisms

σH → H, τ 7→ τσ, B → σB, b 7→ σb

induce the conjugation homomorphisms

σ∗ : H
n(H,B)→ Hn(σH,σB),

and we have,
1∗ = id and (στ)∗ = σ∗τ∗.
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Change of the Group G (2/3)

Inflation and Restriction

Let H EG be a normal closed subgroup, then AH is a G/H-module, and
the projection and injection

G→ G/H, AH ↪→ A
form a compatible pair of homomorphisms, which induces the inflation

inf
G/H
G : Hn(G/H,An)→ Hn(G,A).

homomorphism, which is transitive, i.e., for H ⊂ F EG normal closed,

inf
G/H
G ◦ infG/HG/F = inf

G/F
G .

Let H ⊂ G be a closed subgroup and A a G-module, consider the two
homomorphisms

H
incl
↪→ G, A

id−→ A.
We use cochains they induce the restriction maps to obtain the restriction

resGH : Hn(G,A)→ Hn(H,A)
homomorphisms, which is transitive, i.e., for F ⊂ H ⊂ G closed,

resHF ◦ resGH = resGF .
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Change of the Group G (3/3)

Corestriction

If H is an open subgroups of G, then we have another map in the opposite
direction of the restriction, it is a kind of norm map called the
corestriction:

NG/H : (Xn)H → (Xn)G, NG/H :

Taking cohomology of these cochain complexes

corHG : Hn(H,A)→ Hn(G,A).

For n = 0, it is the usual norm map

NG/H : AH → AG, a 7→
∑

g∈G/H

ga

For F ⊂ H ≤ G two open subgroups, the equation NG/H ◦NH/F = NG/F

implies the transitivity

corHG ◦ corFH = corFG .
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Galois Cohomology (1/2)

Let L be a finite Galois extension of the field K, and let G = Gal(L/K),
then both the additive and multiplicative groups of L are G-modules.

The additive group L+ is cohomologically uninteresting, as

Hq(G,L+) = 0 for all q > 0.

Proof.

The above follows from the existence of a normal basis of L/K. If c ∈ L
is chosen in such a way that {σc |σ ∈ G} is a basis of L/K, then
L+ =

⊕
σ∈GK

+ · σc =
⊕

σ∈G σ(K
+ · c), which means that L+ is a

G-induced module, i.e., all of its cohomological groups are trivial.

Generalization by Noether of Hilbert 90

H1(G,L×) = 1.
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Galois Cohomology (2/2)

Proof.

Let a0 ∈ L× be a 1-cocycle of the G-module L×. If c ∈ L×, consider
b =

∑
σ∈G aσ · σc. Since the automorphisms σ are linearly independent,

there is an element c ∈ L× such that b 6= 0. Therefore

τ(b) =
∑
σ∈G

τaσ(τσc) =
∑
σ∈G

a−1τ · aτσ(τσc) = a−1τ · b,

i.e., aτ = τ(b−1)/b−1. Hence aτ is a 1-coboundary.

Corollary: Hilbert’s 90

Let L/K be a cyclic extension, and let σ be a generator of G. If x ∈ L×
with NL/Kx = 1, then there is a c ∈ L× such that

x =
σc

c
.
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Recap and Future topics

Review

Today we discussed

1 Definition of group cohomology via cochain complex.

2 Construction of group cohomology via resolutions.

3 H0, H1, H2, H0, H1.

4 Conjugation, restriction, inflation, corestriction homomorphisms.

5 A first glimpse of Galois cohomology.

Future topics

1 Tate Cohomology and Tate’s Theorem.

2 Local Class Field Theory.

3 Brauer Groups.

4 Global Class Field Theory.
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